Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Co palladium

Szanyi J, Kuhn W K and Goodman D W 1994 CO oxidation on palladium 2. A combined kinetic-infrared reflection absorption spectroscopic study of Pd(IOO) J. Phys. Chem. 98 2978... [Pg.955]

Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26]. Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26].
Xu X, Chen P and Goodman D W 1994 A oomparative study of the ooadsorption of CO and NO on Pd(IOO), Pd (111), and silioa-supported palladium partioles with infrared refleotion-absorption speotrosoopy J. Phys. Chem. 98 9242-6... [Pg.1796]

P. M. Henry, Palladium Catalyzed Oxidation of Hvdrocarbons. D. Reidel Pub. Co.. Dordrecht. 1980. [Pg.11]

The cyclohexadiene derivative 130 was obtained by the co-cyclization of DMAD with strained alkenes such as norbornene catalyzed by 75[63], However, the linear 2 1 adduct 131 of an alkene and DMAD was obtained selectively using bis(maleic anhydride)(norbornene)palladium (124)[64] as a cat-alyst[65], A similar reaction of allyl alcohol with DMAD is catalyzed by the catalyst 123 to give the linear adducts 132 and 133[66], Reaction of a vinyl ether with DMAD gives the cyclopentene derivatives 134 and 135 as 2 I adducts, and a cyclooctadiene derivative, although the selectivity is not high[67]. [Pg.487]

During the reaction, the palladium catalyst is reduced. It is reoxidized by a co-catalyst system such as cupric chloride and oxygen. The products are acryhc acid in a carboxyUc acid-anhydride mixture or acryUc esters in an alcohoHc solvent. Reaction products also include significant amounts of 3-acryloxypropionic acid [24615-84-7] and alkyl 3-alkoxypropionates, which can be converted thermally to the corresponding acrylates (23,98). The overall reaction may be represented by ... [Pg.156]

CO, and methanol react in the first step in the presence of cobalt carbonyl catalyst and pyridine [110-86-1] to produce methyl pentenoates. A similar second step, but at lower pressure and higher temperature with rhodium catalyst, produces dimethyl adipate [627-93-0]. This is then hydrolyzed to give adipic acid and methanol (135), which is recovered for recycle. Many variations to this basic process exist. Examples are ARCO s palladium/copper-catalyzed oxycarbonylation process (136—138), and Monsanto s palladium and quinone [106-51-4] process, which uses oxygen to reoxidize the by-product... [Pg.244]

The impurities usually found in raw hydrogen are CO2, CO, N2, H2O, CH, and higher hydrocarbons. Removal of these impurities by shift catalysis, H2S and CO2 removal, and the pressure-swing adsorption (PSA) process have been described (vide supra). Traces of oxygen in electrolytic hydrogen are usually removed on a palladium or platinum catalyst at room temperature. [Pg.428]

Sumitomo Chemical Co. (98—100) and Mitsubishi Kasei Co. (101) have patented single-step catalysts containing niobium and palladium. A Sumitomo example reports 93.5% MIBK selectivity at 41.8% acetone conversion and conditions of 160°C and 2 MPa. Other significant processes have been reported (60,102—110). [Pg.492]

Black nickel oxide is used as an oxygen donor in three-way catalysts containing rhodium, platinum, and palladium (143). Three-way catalysts, used in automobiles, oxidize hydrocarbons and CO, and reduce NO The donor quaUty, ie, the abiUty to provide oxygen for the oxidation, results from the capabihty of nickel oxide to chemisorb oxygen (see Exhaust control, automotive). [Pg.14]

UBE Industries, Ltd. has improved the basic method (32—48). In the UBE process, dialkyl oxalate is prepared by oxidative CO coupling in the presence of alkyl nitrite and a palladium catalyst. [Pg.459]

Miscellaneous. Reductioa of a palladium salt by CO is the basis of a visual test for ambieat carboa moaoxide (227). Palladium compouads are used as photographic seasitizers (228). The low dimensional mixed valeace compouad Csq g3[Pd(S2C2(CN)2)] 0.5H2O behaves as a semimetal at room temperature (229). Palladium compouads isostmctural with poteat platiaum antitumor compounds have poor antitumor activity (230). [Pg.183]

The first CO route to make adipic acid is a BASF process employing CO and methanol in a two-step process producing dimethyl adipate [627-93-0] which is then hydroly2ed to the acid (43—46). Cobalt carbonyl catalysts such as Co2(CO)g are used. Palladium catalysts can be used to effect the same reactions at lower pressures (47—49). [Pg.342]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

Aromatic Aldehydes. Carbon monoxide reacts with aromatic hydrocarbons or aryl haHdes to yield aromatic aldehydes (see Aldehydes). The reaction of equation 24 proceeds with yields of 89% when carried out at 273 K and 0.4 MPa (4 atm) using a boron trifluoride—hydrogen fluoride catalyst (72), whereas conversion of aryl haHdes to aldehydes in 84% yield by reaction with CO + H2 requires conditions of 423 K and 7 MPa (70 atm) with a homogeneous palladium catalyst (73) and also produces HCl. [Pg.53]

CO Oxidation Catalyzed by Palladium. One of the best understood catalytic reactions occurring on a metal surface is the oxidation of carbon monoxide on palladium ... [Pg.176]

Cyanuric acid can also be prepared from HNCO (100). Isocyanic acid [75-13-8] can be synthesized directiy by oxidation of HCN over a silver catalyst (101) or by reaction of H2, CO, and NO (60—75% yield) over palladium or iridium catalysts at 280—450°C (102). Ammonium cyanate and urea are by-products of the latter reaction. [Pg.420]

Catalysis is done by an acidic solution of the stabilized reaction product of stannous chloride and palladium chloride. Catalyst absorption is typically 1—5 p-g Pd per square centimeter. Other precious metals can be used, but they are not as cost-effective. The exact chemical identity of this catalyst has been a matter of considerable scientific interest (19—21,23). It seems to be a stabilized coUoid, co-deposited on the plastic with excess tin. The industry trends have been to use higher activity catalysts at lower concentrations and higher temperatures. Typical usage is 40—150 ppm of palladium at 60°C maximum, and a 30—60-fold or more excess of stannous chloride. Catalyst variations occasionally used include alkaline and non-noble metal catalysts. [Pg.110]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

R. Hicks and co-workers, Structure Sensitivity of Methane Oxidation overl latinum and Palladium J. Catal, 280—306 (1990). [Pg.498]


See other pages where Co palladium is mentioned: [Pg.381]    [Pg.120]    [Pg.1042]    [Pg.1334]    [Pg.120]    [Pg.402]    [Pg.388]    [Pg.73]    [Pg.381]    [Pg.120]    [Pg.1042]    [Pg.1334]    [Pg.120]    [Pg.402]    [Pg.388]    [Pg.73]    [Pg.295]    [Pg.951]    [Pg.1781]    [Pg.76]    [Pg.126]    [Pg.168]    [Pg.202]    [Pg.393]    [Pg.460]    [Pg.417]    [Pg.69]    [Pg.206]    [Pg.172]    [Pg.182]    [Pg.183]    [Pg.183]    [Pg.184]    [Pg.220]    [Pg.250]    [Pg.240]    [Pg.342]    [Pg.168]    [Pg.62]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Adsorption of CO on Palladium

Oxidation of CO on Palladium

© 2024 chempedia.info