Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clearing parameters

The only way to avoid this is by strict analysis of the supply chain from the customer order to final product delivery. Definition of the optimized (theoretical) process and sequential work towards a high service level approach allow the identification of gaps, and of opportunities which might not always be the cheapest (ship versus train versus plane) but could be the most effective way to reduce capital costs and shorten planning scope - an important aspect, especially in volatile customer markets with long production processes on the (chemical) supplier side. As in the case of CIP, this needs clear parameters, KPIs, commitment from all players, and regular tracking. The most important parameters are the lead time for all products, optimal lot sizes, replenishment points, and safety inventories. [Pg.254]

There are good examples from the metabolic literature of studies in which the number of data observed for a single subject is limited. An example is measuring the mean residence time of low density lipoprotein in the rabbit aortic wall (Schwenke and Carew, 1989). In experiments such as these, samples of the aorta may only be obtained once, at the end of the experiment. Thus there is only one datum for each tracer used. Schwenke and Carew (1989) used two iodine tracers, administered at different times, but the compartmental model they used has four parameters. Clearly, parameter values cannot be estimated for each animal without using information from experiments in other animals. [Pg.272]

Nonetheless, the methodological potential of simple QQSPR techniques obviously appears in the present case, as no classic QSPR procedure can provide (1) a relationship for stereoisomer systems, able to offer a clear parameter, describing the distinction between R and S nature, as the one found in the form of a QS Euclidean distance and (2) a simple QQSPR for truly heterogeneous molecules. The origin of the nonlinear QQSPR structure found might be hidden in the approximate linearly defined structure of the QQSPR operator. As shown in Equation 17.9, the QQSPR operator is not completely appropriate to handle the R-S problem, as evidenced by the computed polynomial relations. Nevertheless, it can be said that there exists a linear relation of a type similar to Equation 17.10 for enantiomers, where the operator Q needs the addition of a new nonlinear extra term correcting the expectation value, expression. [Pg.362]

Clear parameters need to be defined with regard to activity at high temperatures and resistance to inactivation by heat in order to compare enzymes. A plot of... [Pg.61]

Staff to contact you if concerned (give clear parameters)... [Pg.648]

The complete transition sequence is characterized by the description of the solid state (Sec. 5.1), the liquid crystalline transitions (Sec. 5.2) and the clearing parameter (Sec. 5.3). [Pg.56]

In describing reactor performance, selectivity is usually a more meaningful parameter than reactor yield. Reactor yield is based on the reactant fed to the reactor rather than on that which is consumed. Clearly, part of the reactant fed might be material that has been recycled rather than fresh feed. Because of this, reactor yield takes no account of the ability to separate and recycle unconverted raw materials. Reactor yield is only a meaningful parameter when it is not possible for one reason or another to recycle unconverted raw material to the reactor inlet. By constrast, the yield of the overall process is an extremely important parameter when describing the performance of the overall plant, as will be discussed later. [Pg.25]

Prompted by the success, TOFD measurements were conducted on a fatigue crack in a stainless steel compact tension specimen. Test and system parameters were optimised following the same procedure used for carbon steel specimens. A clear diffracted signal was observed with relatively good SNR and its depth as measured from the time-of-flight measurements matched exactly with the actual depth. [Pg.725]

The are essentially adjustable parameters and, clearly, unless some of the parameters in A2.4.70 are fixed by physical argument, then calculations using this model will show an improved fit for purely algebraic reasons. In principle, the radii can be fixed by using tables of ionic radii calculations of this type, in which just the A are adjustable, have been carried out by Friedman and co-workers using the HNC approach [12]. Further rermements were also discussed by Friedman [F3], who pointed out that an additional temi is required to account for the fact that each ion is actually m a cavity of low dielectric constant, e, compared to that of the bulk solvent, e. A real difficulty discussed by Friedman is that of making the potential continuous, since the discontinuous potentials above may lead to artefacts. Friedman [F3] addressed this issue and derived... [Pg.583]

The above expressions are empirical approaches, with m and D. as parameters, for including an anliamionic correction in the RRKM rate constant. The utility of these equations is that they provide an analytic fomi for the anliamionic correction. Clearly, other analytic fomis are possible and may be more appropriate. For example, classical sums of states for Fl-C-C, F1-C=C, and F1-C=C hydrocarbon fragments with Morse stretching and bend-stretch coupling anhamionicity [M ] are fit accurately by the exponential... [Pg.1022]

Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-... Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-...
This behaviour also stands for functionalized [60]fullerene derivatives, with, however, a few striking differences. The most obvious parameter is the negative shift of the reduction potentials, which typically amounts to -100 mV. Secondly, the separation of the corresponding reduction potentials is clearly different. Wlrile the first two reduction steps follow closely the trend noted for pristine [60]fullerene, the remaining four steps display an enlianced separation. This has, again, a good resemblance to the ITOMO-LUMO calculations, namely, a cancellation of the degeneration for functionalized [60]fullerenes [31, 116, 117]. [Pg.2418]

Figure C2.5.2. Scaling of the number of MBS C(MES) (squares) is shown for the hydrophobic parameter = -0.1 and A = 0.6. Data were obtained for the cubic lattice. The pairs of squares for each represent the quenched averages for different samples of 30 sequences. The number of compact stmctures C(CS) and self-avoiding confonnations C(SAW) are also displayed to underscore the dramatic difference of scaling behaviour of C(MES) and C(CS) (or C(SAW)). It is clear that C(MES) remains practically flat, i.e. it grows no faster than In N. Figure C2.5.2. Scaling of the number of MBS C(MES) (squares) is shown for the hydrophobic parameter = -0.1 and A = 0.6. Data were obtained for the cubic lattice. The pairs of squares for each represent the quenched averages for different samples of 30 sequences. The number of compact stmctures C(CS) and self-avoiding confonnations C(SAW) are also displayed to underscore the dramatic difference of scaling behaviour of C(MES) and C(CS) (or C(SAW)). It is clear that C(MES) remains practically flat, i.e. it grows no faster than In N.
Figure C3.5.6 compares the result of this ansatz to the numerical result from the Wiener-Kliintchine theorem. They agree well and the ansatz exliibits the expected exponential energy-gap law (VER rate decreases exponentially with Q). The ansatz was used to detennine the VER rate with no quantum correction Q= 1), with the Bader-Beme hannonic correction [61] and with a correction based [83, M] on Egelstaff s method [62]. The Egelstaff corrected results were within a factor of five of experiment, whereas other corrections were off by orders of magnitude. This calculation represents the present state of the art in computing VER rates in such difficult systems, inasmuch as the authors used only a model potential and no adjustable parameters. However the ansatz procedure is clearly not extendible to polyatomic molecules or to diatomic molecules in polyatomic solvents. Figure C3.5.6 compares the result of this ansatz to the numerical result from the Wiener-Kliintchine theorem. They agree well and the ansatz exliibits the expected exponential energy-gap law (VER rate decreases exponentially with Q). The ansatz was used to detennine the VER rate with no quantum correction Q= 1), with the Bader-Beme hannonic correction [61] and with a correction based [83, M] on Egelstaff s method [62]. The Egelstaff corrected results were within a factor of five of experiment, whereas other corrections were off by orders of magnitude. This calculation represents the present state of the art in computing VER rates in such difficult systems, inasmuch as the authors used only a model potential and no adjustable parameters. However the ansatz procedure is clearly not extendible to polyatomic molecules or to diatomic molecules in polyatomic solvents.
The END equations are integrated to yield the time evolution of the wave function parameters for reactive processes from an initial state of the system. The solution is propagated until such a time that the system has clearly reached the final products. Then, the evolved state vector may be projected against a number of different possible final product states to yield coiresponding transition probability amplitudes. Details of the END dynamics can be depicted and cross-section cross-sections and rate coefficients calculated. [Pg.233]

To improve the accuracy of the solution, the size of the time step may be decreased. The smaller is the time step, the smaller are the assumed errors in the trajectory. Hence, in contrast (for example) to the Langevin equation that includes the friction as a phenomenological parameter, we have here a systematic way of approaching a microscopic solution. Nevertheless, some problems remain. For a very large time step, it is not clear how relevant is the optimal trajectory to the reality, since the path variance also becomes large. Further-... [Pg.273]

The salient comparisons are between the bars marked P3-Dk, our initial parallel PME implementation, and DP-4, the macroscopic multipole method with four levels of macroscopic boxes. Though it is difficult to create a completely fair comparison in terms of the relative accuracy of the potentials and forces as computed by the two methods, the parameters for these simulations were tuned to give comparable overall accuracy. PME is clearly... [Pg.468]

The Diels-Alder reaction provides us with a tool to probe its local reaction environment in the form of its endo-exo product ratio. Actually, even a solvent polarity parameter has been based on endo-exo ratios of Diels-Alder reactions of methyl acrylate with cyclopentadiene (see also section 1.2.3). Analogously we have determined the endo-exo ratio of the reaction between 5.1c and 5.2 in surfactant solution and in a mimber of different organic and acpieous media. These ratios are obtained from the H-NMR of the product mixtures, as has been described in Chapter 2. The results are summarised in Table 5.3, and clearly point towards a water-like environment for the Diels-Alder reaction in the presence of micelles, which is in line with literature observations. [Pg.137]

Clearly the equilibrium concentration of chloride is an important parameter if the concentration of silver is to be determined gravimetrically by precipitating AgCl. In particular, a large excess of chloride must be avoided. [Pg.237]


See other pages where Clearing parameters is mentioned: [Pg.71]    [Pg.688]    [Pg.59]    [Pg.930]    [Pg.71]    [Pg.688]    [Pg.59]    [Pg.930]    [Pg.135]    [Pg.30]    [Pg.725]    [Pg.729]    [Pg.755]    [Pg.741]    [Pg.1490]    [Pg.1490]    [Pg.2340]    [Pg.2827]    [Pg.117]    [Pg.478]    [Pg.116]    [Pg.119]    [Pg.2]    [Pg.116]    [Pg.186]    [Pg.239]    [Pg.243]    [Pg.617]    [Pg.718]    [Pg.92]    [Pg.213]    [Pg.4]    [Pg.69]   
See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Clear

Clearness

© 2024 chempedia.info