Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona alkaloids, enantioselection reaction

The hydrogenation of methyl pyruvate proceeded over 4% Pd/Fe20 at 293 K and 10 bar when the catalyst was prepared by reduction at room temperature Racemic product was obtained over utunodified catalyst, modification of the catalyst with a cinchona alkaloid reduced reaction rate and rendered the reaction enantioselective. S-lactate was formed in excess when the modifier was cinchonidine, and R-lactate when the modifier was cinchonine... [Pg.223]

In this chapter, we discuss recent (reported mainly during 2000-2005) asymmetric reactions catalyzed by chiral bases. Because practicality is an important factor in the present asymmetric catalysis, we restricted our discussion mainly to the reactions giving over 90% ee unless the conversion is novel. We notice, however, that there are many potentially useful and scientifically interesting reactions, in which enantioselectivity does not exceed the practical range at this moment. Chiral organic base (proline and cinchona alkaloids)-catalyzed reactions were discussed in Chapter 11 by Lelais and MacMillan. [Pg.383]

Another type of Cinchona alkaloid catalyzed reactions that employs azodicarbo-xylates includes enantioselective allylic amination. Jprgensen [51-53] investigated the enantioselective electrophilic addition to aUyhc C-H bonds activated by a chiral Brpnsted base. Using Cinchona alkaloids, the first enantioselective, metal-free aUyhc amination was reported using alkylidene cyanoacetates with dialkyl azodi-carboxylates (Scheme 12). The product was further functionalized and used in subsequent tandem reactions to generate useful chiral building blocks (52, 53). Subsequent work was applied to other types of allylic nitriles in the addition to a,P-unsaturated aldehydes and P-substituted nitro-olefins (Scheme 13). [Pg.156]

One of the most significant developmental advances in the Jacobsen-Katsuki epoxidation reaction was the discovery that certain additives can have a profound and often beneficial effect on the reaction. Katsuki first discovered that iV-oxides were particularly beneficial additives. Since then it has become clear that the addition of iV-oxides such as 4-phenylpyridine-iV-oxide (4-PPNO) often increases catalyst turnovers, improves enantioselectivity, diastereoselectivity, and epoxides yields. Other additives that have been found to be especially beneficial under certain conditions are imidazole and cinchona alkaloid derived salts vide infra). [Pg.34]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

Arai and co-workers have used chiral ammonium salts 89 and 90 (Scheme 1.25) derived from cinchona alkaloids as phase-transfer catalysts for asymmetric Dar-zens reactions (Table 1.12). They obtained moderate enantioselectivities for the addition of cyclic 92 (Entries 4—6) [43] and acyclic 91 (Entries 1-3) chloroketones [44] to a range of alkyl and aromatic aldehydes [45] and also obtained moderate selectivities on treatment of chlorosulfone 93 with aromatic aldehydes (Entries 7-9) [46, 47]. Treatment of chlorosulfone 93 with ketones resulted in low enantioselectivities. [Pg.23]

Pt/Al2C>3-cinchona alkaloid catalyst system is widely used for enantioselective hydrogenation of different prochiral substrates, such as a-ketoesters [1-2], a,p-diketones, etc. [3-5], It has been shown that in the enantioselective hydrogenation of ethyl pyruvate (Etpy) under certain reaction conditions (low cinchonidine concentration, using toluene as a solvent) achiral tertiary amines (ATAs triethylamine, quinuclidine (Q) and DABCO) as additives increase not only the reaction rate, but the enantioselectivity [6], This observation has been explained by a virtual increase of chiral modifier concentration as a result of the shift in cinchonidine monomer - dimer equilibrium by ATAs [7],... [Pg.535]

The enantioselective hydrogenation of prochiral substances bearing an activated group, such as an ester, an acid or an amide, is often an important step in the industrial synthesis of fine and pharmaceutical products. In addition to the hydrogenation of /5-ketoesters into optically pure products with Raney nickel modified by tartaric acid [117], the asymmetric reduction of a-ketoesters on heterogeneous platinum catalysts modified by cinchona alkaloids (cinchonidine and cinchonine) was reported for the first time by Orito and coworkers [118-121]. Asymmetric catalysis on solid surfaces remains a very important research area for a better mechanistic understanding of the interaction between the substrate, the modifier and the catalyst [122-125], although excellent results in terms of enantiomeric excesses (up to 97%) have been obtained in the reduction of ethyl pyruvate under optimum reaction conditions with these Pt/cinchona systems [126-128],... [Pg.249]

In order to evaluate the catalytic characteristics of colloidal platinum, a comparison of the efficiency of Pt nanoparticles in the quasi-homogeneous reaction shown in Equation 3.7, with that of supported colloids of the same charge and of a conventional heterogeneous platinum catalyst was performed. The quasi-homogeneous colloidal system surpassed the conventional catalyst in turnover frequency by a factor of 3 [157], Enantioselectivity of the reaction (Equation 3.7) in the presence of polyvinyl-pyrrolidone as stabilizer has been studied by Bradley et al. [158,159], who observed that the presence of HC1 in as-prepared cinchona alkaloids modified Pt sols had a marked effect on the rate and reproducibility [158], Removal of HC1 by dialysis improved the performance of the catalysts in both rate and reproducibility. These purified colloidal catalysts can serve as reliable... [Pg.80]

As mentioned, the most studied reaction using these modified catalysts is the enantioselective hydrogenation of MP or ethyl pyruvate to the corresponding lactates using cinchona alkaloids... [Pg.511]

Several examples exist of the application of chiral natural N-compounds in base-catalyzed reactions. Thus, L-proline and cinchona alkaloids have been applied [35] in enantioselective aldol condensations and Michael addition. Techniques are available to heterogenize natural N-bases, such as ephedrine, by covalent binding to mesoporous ordered silica materials [36]. [Pg.114]

Alcoholysis of meso-cycYic anhydrides offers a versatile route to succinate and glu-tarate half-esters. Although a number of stoichiometric approaches to this problem have been investigated, a successful catalytic version of this reaction appeared as recently as 2003. ° Bolm and coworkers have developed a protocol for the metha-nolysis of a variety of succinic anhydrides using cinchona alkaloids [Eq. (10.50)]. The reaction may be made catalytic in alkaloid when pentamethylpiperidine is used as a stoichiometric additive. A moderate decrease in enantioselectivity is observed in a number of cases, although excellent selectivities are still attainable. More problematic is the reaction time (6 days under catalytic conditions) ... [Pg.300]

A new cinchona alkaloid-derived catalyst has been developed for the enantioselective Strecker reaction of aryl aldimines via hydrogen-bonding activation. For reference, see Huang, J. Corey, E. J. Org. Lett. 2004, 6, 5027-5029. [Pg.353]

The majority of the Michael-type conjugate additions are promoted by amine-based catalysts and proceed via an enamine or iminium intermediate species. Subsequently, Jprgensen et al. [43] explored the aza-Michael addition of hydra-zones to cyclic enones catalyzed by Cinchona alkaloids. Although the reaction proceeds under pyrrolidine catalysis via iminium activation of the enone, and also with NEtj via hydrazone activation, both methods do not confer enantioselectivity to the reaction. Under a Cinchona alkaloid screen, quinine 3 was identified as an effective aza-Michael catalyst to give 92% yield and 1 3.5 er (Scheme 4). [Pg.151]

Highly enantioselective organocatalytic Mannich reactions of aldehydes and ketones have been extensively stndied with chiral secondary amine catalysts. These secondary amines employ chiral prolines, pyrrolidines, and imidazoles to generate a highly active enamine or imininm intermediate species [44], Cinchona alkaloids were previonsly shown to be active catalysts in malonate additions. The conjngate addition of malonates and other 1,3-dicarbonyls to imines, however, is relatively nnexplored. Snbseqnently, Schans et al. [45] employed the nse of Cinchona alkaloids in the conjngate addition of P-ketoesters to iV-acyl aldimines. Highly enantioselective mnltifnnctional secondary amine prodncts were obtained with 10 mol% cinchonine (Scheme 5). [Pg.152]

New catalyst design further highlights the utility of the scaffold and functional moieties of the Cinchona alkaloids. his-Cinchona alkaloid derivative 43 was developed by Corey [49] for enantioselective dihydroxylation of olefins with OsO. The catalyst was later employed in the Strecker hydrocyanation of iV-allyl aldimines. The mechanistic logic behind the catalyst for the Strecker reaction presents a chiral ammonium salt of the catalyst 43 (in the presence of a conjugate acid) that would stabilize the aldimine already activated via hydrogen-bonding to the protonated quinuclidine moiety. Nucleophilic attack by cyanide ion to the imine would give an a-amino nitrile product (Scheme 10). [Pg.155]

The efficiency with which modified Cinchona alkaloids catalyze conjugate additions of a-substituted a-cyanoacetates highlights the nitrile group s stereoselective role with the catalyst. Deng et al. [60] utilized this observation to develop a one-step construction of chiral acyclic adducts that have non-adjacent, 1,3-tertiary-quatemary stereocenters. Based on their mechanistic studies and proposed transition state model, the bifimctional nature of the quinoline C(6 )-OH Cinchona alkaloids could induce a tandem conjugate addition-protonation reaction to create the tertiary and quaternary stereocenters in an enantioselective and diastereoselective manner (Scheme 18). [Pg.160]

Nitroaldol (Henry) reactions of nitroalkanes and a carbonyl were investigated by Hiemstra [76], Based on their earlier studies with Cinchona alkaloid derived catalysts, they were able to achieve moderate enantioselectivities between aromatic aldehydes and nitromethane. Until then, organocatalyzed nitroaldol reactions displayed poor selectivities. Based on prior reports by Sods [77], an activated thionrea tethered to a Cinchona alkaloid at the quinoline position seemed like a good catalyst candidate. Hiemstra incorporated that same moiety to their catalyst. Snbsequently, catalyst 121 was used in the nitroaldol reaction of aromatic aldehydes to generate P-amino alcohols in high yield and high enantioselectivities (Scheme 27). [Pg.167]

The use of compounds with activated methylene protons (doubly activated) enables the use of a mild base during the Neber reaction to 277-azirines. Using ketoxime 4-toluenesulfonates of 3-oxocarboxylic esters 539 as starting materials and a catalytic quantity of chiral tertiary base for the reaction, moderate to high enantioselectivity (44-82% ee) was achieved (equation 240). This asymmetric conversion was observed for the three pairs of Cinchona alkaloids (Cinchonine/Cinchonidine, Quinine/Quinidine and Dihydro-quinine/Dihydroquinidine). When the pseudoenantiomers of the alkaloid bases were used, opposite enantioselectivity was observed in the reaction. This fact shows that the absolute configuration of the predominant azirine can be controlled by base selection. [Pg.478]


See other pages where Cinchona alkaloids, enantioselection reaction is mentioned: [Pg.47]    [Pg.84]    [Pg.48]    [Pg.168]    [Pg.56]    [Pg.108]    [Pg.113]    [Pg.237]    [Pg.4]    [Pg.71]    [Pg.230]    [Pg.223]    [Pg.127]    [Pg.81]    [Pg.500]    [Pg.514]    [Pg.530]    [Pg.59]    [Pg.29]    [Pg.413]    [Pg.278]    [Pg.315]    [Pg.335]    [Pg.336]    [Pg.337]    [Pg.147]    [Pg.149]    [Pg.157]    [Pg.162]    [Pg.164]    [Pg.173]    [Pg.265]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Cinchona

Cinchona alkaloids reaction

Cinchona alkaloids, enantioselection

Enantioselective reaction

Organocatalytic reactions, enantioselection Cinchona alkaloids

© 2024 chempedia.info