Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium redox with complexes

Diphenylcarbazone and diphenylcarbazide have been widely used for the spectrophotometric determination of chromium [ 190]. Crm reacts with diphenylcarbazone whereas CrVI reacts (probably via a redox reaction combined with complexation) with diphenylcarbazide [ 191 ]. Although speciation would seem a likely prospect with such reactions, commercial diphenylcarbazone is a complex mixture of several components, including diphenylcarbazide, diphenylcarbazone, phenylsemicarbazide, and diphenylcarbadiazone, with no stoichiometric relationship between the diphenylcarbazone and diphenylcarbazide [192]. As a consequence, use of diphenylcarbazone to chelate Crm selectively also results in the sequestration of some CrVI. Total chromium can be determined with diphenylcarbazone following reduction of all chromium to Crm. [Pg.160]

Another system under investigation is the iron/ chromium redox flow battery (Fe/Cr RFB) developed by NASA. The performance requirements of the membrane for Fe/Cr RFB are severe. The membrane must readily permit the passage of chloride ions, but should not allow any mixing of the chromium and iron ions. An anionic permselective membrane CDIL-AA5-LC-397, developed by Ionics, Inc., performed well in this system. ° It was prepared by a free radical polymerization of vinylbenzyl chloride and dimethylaminoethyl methacrylate in a 1 1 molar ratio. One major issue with the anionic membranes was its increase in resistance during the time it was exposed to a ferric chloride solution. The resistance increase termed fouling is related to the ability of the ferric ion to form ferric chloride complexes, which are not electrically repelled by the anionic membrane. An experiment by Arnold and Assink indicated that... [Pg.218]

The chemistry of the transition metals including chromium(III) with these ligands has been the subject of a recent and extensive review,788 with references to the early literature. The close relationship between the catechol (180), semiquinone (181) and quinone (182) complexes may be appreciated by considering the redox equation below (equation 44). 789 The formal reduction potentials for the chromium(III) complexes (183-186 equation 45) are +0.03, -0.47 and -0.89 V (vs. SCE in acetonitrile) respectively. [Pg.865]

The resolution of tris(catecholato)chromate(III) has been achieved by crystallization with L-[Co(en)3]3+ the diastereomeric salt isolated contained the L-[Cr(cat)3]3 ion.793 Comparison of the properties of this anion with the chromium(III) enterobactin complex suggested that the natural product stereospeeifically forms the L-cis complex with chromium(III) (190). The tris(catecholate) complex K3[Cr(Cat)3]-5H20 crystallizes in space group C2/c with a = 20.796, 6 = 15.847 and c = 12.273 A and jS = 91.84° the chelate rings are planar.794 Electrochemical and spectroscopic studies of this complex have also been undertaken.795 Recent molecular orbital calculations796 on quinone complexes are consistent with the ligand-centred redox chemistry generally proposed for these systems.788... [Pg.866]

Cuadrado and co-workers have reported the synthesis of chromium-containing organosilicon dendrimers.334 These dendrimers, 282, have chromium tricarbonyl units incorporated pendent to the terminal aromatic rings.334 Synthesized via the reaction of the silane dendrimer precursor with chromium hexacarbonyl, complete complexation was not possible due to steric hindrance at higher generations. Electrochemical studies showed that the oxidation of the chromium atoms occurred reversibly in the absence of a nucleophilic species and that the chromium tricarbonyl units behaved as isolated redox centers. [Pg.111]

The authors reach a different conclusion thus. (The Pz-Pzm potential of —0.020 V], in combination with a Cr3+ potential of —0.41 V, leads to an equilibrium constant of 3 x 10 for a redox reaction uncomplicated by chromium-pyrazine co-ordination. The discrepancy between this value and the observed constant, 3 x 10 M, indicates that the chromium(ni) radical complex is 10 times as stable toward heterolysis. .. as is the (unobservable) chrom-ium(iir)-pyrazine complex, but in the absence of further information we cannot assign individual formation constants to these isomeric species. It seems that the authors have attributed the equilibrium constant of 3 x 10 M to the equilibrium Cri (Pz ) Cr (Pz)2+, whereas in fact it relates to the outer-sphere process Cr +-I-(Pz ) T= Cr2+-)-Pz, leading directly to the conclusion stated in the text above. [Pg.28]

In this volume extra space has been given to areas concerned with electron transfer processes and substitution reactions of inert complexes, and to improve convenience for the reader the text has been further divided to form three additional chapters. Electron transfer processes are discussed in three chapters General and Theoretical, Reactions between Two Complexes, and Metal-Ligand Redox Reactions, while six chapters are concerned with substitution and related reactions. Here reactions of inert chromium and cobalt complexes are discussed in separate chapters. [Pg.463]

A novel polysiloxane, containing the isocyanide group pendent to the backbone, has been synthesized. It is observed to react with the metal vapors of chromium, iron and nickel to afford binary metal complexes of the type M(CN-[P])n, where n = 6, 5, 4 respectively, in which the polymer-attached isocyanide group provides the stabilization for the metal center. The product obtained from the reaction with Fe was found to be photosensitive yielding the Fe2(CN-[P])q species and extensive cross-linking of the polymer. The Cr and Ni products were able to be oxidized on exposure of thin films to the air, or electrochemically in the presence of an electron relay. The availability of different oxidation states for the metals in these new materials gives hope that novel redox-active polymers may be accessible. [Pg.238]

Thiocarbamate (tc, RHNCSO-) is a monodentate ambidentate ligand, and both oxygen- and sulfur-bonded forms are known for the simple pentaamminecobalt(III) complexes. These undergo redox reactions with chromium(II) ion in water via attack at the remote O or S atom of the S- and O-bound isomers respectively, with a structural trans effect suggested to direct the facile electron transfer in the former.1045 A cobalt-promoted synthesis utilizing the residual nucleophilicity of the coordinated hydroxide in [Co(NH3)5(OH)]2+ in reaction with MeNCS in (MeO)3PO solvent leads to the O-bonded monothiocarbamate, which isomerizes by an intramolecular mechanism to the S-bound isomer in water.1046... [Pg.93]

Chromium(III) is a commonly-used crosslinker for preparing profile control gels with polymers having carboxylate and amide functionalities (la,b). Cr(III) is applied in many forms. For example, it can be used in the form of simple chromic salts of chloride and sulfate, or as complexed Cr(III) used in leather tanning (2), or as in situ generated Cr(III) from the redox reaction of dichromate and bisulfite or thiourea. The gelation rate and gel quality depend on which form of Cr(III) is used. [Pg.142]

As a further confirmation of the extended redox aptitude of polypyridine ligands, Figure 15 shows the cyclic voltammetric behaviour of the heteroleptic chromium(III) complex with 2,2/-6/,2"-6//,2"/-quaterpyr-idine (qpy), together with its molecular structure.28... [Pg.230]

Chromium(II) is a very effective and important reducing agent that has played a significant and historical role in the development of redox mechanisms (Chap. 5). It has a facile ability to take part in inner-sphere redox reactions (Prob. 9). The coordinated water of Cr(II) is easily replaced by the potential bridging group of the oxidant, and after intramolecular electron transfer, the Cr(III) carries the bridging group away with it and as it is an inert product, it can be easily identified. There have been many studies of the interaction of Cr(II) with Co(III) complexes (Tables 2.6 and 5.7) and with Cr(III) complexes (Table 5.8). Only a few reductions by Cr(II) are outer-sphere (Table 5.7). By contrast, Cr(edta) Ref. 69 and Cr(bpy)3 are very effective outer-sphere reductants (Table 5.7). [Pg.382]

Chromiain(ii) Complexes.—The oxidation of chromium(ii) in alkaline solution has been studied polarographically and the reaction shown to be irreversible with = — 1.65 V vs. S.C.E. In the presence of nitrilotriacetic acid, salicylate, ethylenediamine, and edta the values were determined as —1.075, —1.33, — 1.38, and —1.48 V, respectively. The production of [Cr(edta)NO] from [Cr (edta)H20] and NO, NOJ, or NO2 suggests that this complex is able to react via an inner-sphere mechanism in its redox reactions. ... [Pg.93]


See other pages where Chromium redox with complexes is mentioned: [Pg.255]    [Pg.90]    [Pg.344]    [Pg.710]    [Pg.241]    [Pg.865]    [Pg.277]    [Pg.61]    [Pg.710]    [Pg.2704]    [Pg.55]    [Pg.302]    [Pg.4181]    [Pg.161]    [Pg.11]    [Pg.855]    [Pg.161]    [Pg.291]    [Pg.149]    [Pg.156]    [Pg.190]    [Pg.203]    [Pg.264]    [Pg.272]    [Pg.153]    [Pg.76]    [Pg.114]    [Pg.394]    [Pg.235]    [Pg.243]    [Pg.244]    [Pg.244]    [Pg.244]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 ]




SEARCH



Chromium complex with

© 2024 chempedia.info