Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium content oxidation

Chromium is the most effective addition to improve the resistance of steels to corrosion and oxidation at elevated temperatures, and the chromium—molybdenum steels are an important class of alloys for use in steam (qv) power plants, petroleum (qv) refineries, and chemical-process equipment. The chromium content in these steels varies from 0.5 to 10%. As a group, the low carbon chromium—molybdenum steels have similar creep—mpture strengths, regardless of the chromium content, but corrosion and oxidation resistance increase progressively with chromium content. [Pg.117]

Carbon content is usually about 0.15% but may be higher in bolting steels and hot-work die steels. Molybdenum content is usually between 0.5 and 1.5% it increases creep—mpture strength and prevents temper embrittlement at the higher chromium contents. In the modified steels, siUcon is added to improve oxidation resistance, titanium and vanadium to stabilize the carbides to higher temperatures, and nickel to reduce notch sensitivity. Most of the chromium—molybdenum steels are used in the aimealed or in the normalized and tempered condition some of the modified grades have better properties in the quench and tempered condition. [Pg.117]

Standard Wrought Steels. Steels containing 11% and more of chromium are classed as stainless steels. The prime characteristics are corrosion and oxidation resistance, which increase as the chromium content is increased. Three groups of wrought stainless steels, series 200, 300, and 400, have composition limits that have been standardized by the American Iron and Steel Institute (AlSl) (see Steel). Figure 8 compares the creep—mpture strengths of the standard austenitic stainless steels that are most commonly used at elevated temperatures (35). Compositions of these steels are Hsted in Table 3. [Pg.117]

Steels iu the AISI 400 series contain a minimum of 11.5% chromium and usually not more than 2.5% of any other aHoyiag element these steels are either hardenable (martensitic) or nonhardenable, depending principally on chromium content. Whereas these steels resist oxidation up to temperatures as high as 1150°C, they are not particularly strong above 700°C. Steels iu the AISI 300 series contain a minimum of 16% chromium and 6% nickel the relative amounts of these elements are balanced to give an austenitic stmcture. These steels caimot be strengthened by heat treatment, but can be strain-hardened by cold work. [Pg.118]

Ferritic stainless steels depend on chromium for high temperature corrosion resistance. A Cr202 scale may form on an alloy above 600°C when the chromium content is ca 13 wt % (36,37). This scale has excellent protective properties and occurs iu the form of a very thin layer containing up to 2 wt % iron. At chromium contents above 19 wt % the metal loss owiag to oxidation at 950°C is quite small. Such alloys also are quite resistant to attack by water vapor at 600°C (38). Isothermal oxidation resistance for some ferritic stainless steels has been reported after 10,000 h at 815°C (39). Grades 410 and 430, with 11.5—13.5 wt % Cr and 14—18 wt % Cr, respectively, behaved significandy better than type 409 which has a chromium content of 11 wt %. [Pg.118]

Another set of nickel aHoys, which have a high chromium content, a moderate molybdenum content, and some copper, are the ILLIUM aHoys. These cast aHoys are wear and erosion resistant and highly resistant to corrosion by acids and alkaHes under both oxidizing and reducing conditions. [Pg.6]

The higher chromium—iron alloys were developed in the United States from the early twentieth century on, when the effect of chromium on oxidation resistance at 1090°C was first noticed. Oxidation resistance increased markedly as the chromium content was raised above 20%. For steels containing appreciable quantities of nickel, 20% chromium seems to be the minimum amount necessary for oxidation resistance at 1090°C. [Pg.397]

Another useful element in imparting oxidation resistance to steel is silicon (complementing the effects of chromium). In the lower-chromium ranges, silicon in the amounts of 0.75 to 2 percent is more effective than chromium on a weight-percentage basis. The influence of 1 percent silicon in improving the oxidation rate of steels with varying chromium contents is shown in Fig. 28-26. [Pg.2470]

Type 309-This is a 23/14 steel with greater oxidation resistance than 18/10 steels because of its higher chromium content. [Pg.71]

The high-chromium irons undoubtedly owe their corrosion-resistant properties to the development on the surface of the alloys of an impervious and highly tenacious film, probably consisting of a complex mixture of chromium and iron oxides. Since the chromium oxide will be derived from the chromium present in the matrix and not from that combined with the carbide, it follows that a stainless iron will be produced only when an adequate excess (probably not less than 12% of chromium over the amount required to form carbides is present. It is commonly held, and with some theoretical backing, that carbon combines with ten times its own weight of chromium to produce carbides. It has been said that an increase in the silicon content increases the corrosion resistance of the iron this result is probably achieved because the silicon refines the carbides and so aids the development of a more continuous oxide film over the metal surface. It seems likely that the addition of molybdenum has a similar effect, although it is possible that the molybdenum displaces some chromium from combination with the carbon and therefore increases the chromium content of the ferrite. [Pg.614]

Since the paper by Pilling and Bedworth in 1923 much has been written about the mechanism and laws of growth of oxides on metals. These studies have greatly assisted the understanding of high-temperature oxidation, and the mathematical rate laws deduced in some cases make possible useful quantitative predictions. With alloy steels the oxide scales have a complex structure chromium steels owe much of their oxidation resistance to the presence of chromium oxide in the inner scale layer. Other elements can act in the same way, but it is their chromium content which in the main establishes the oxidation resistance of most heat-resisting steels. [Pg.1021]

Table 7.18 shows that the rate constants at 928°C for the Hastelloy alloys are considerably higher than those for molybdenum-free compositions, although the very low chromium content of Hastelloy W is doubtless a significant factor in this connection. It is noteworthy that the molybdenum-containing low-chromium alloy listed in Table 7.19 is generally superior to the others but this high resistance to oxidation is associated with its relatively high aluminium content. [Pg.1049]

The local dissolution rate, passivation rate, film thickness and mechanical properties of the oxide are obviously important factors when crack initiation is generated by localised plastic deformation. Film-induced cleavage may or may not be an important contributor to the growth of the crack but the nature of the passive film is certain to be of some importance. The increased corrosion resistance of the passive films formed on ferritic stainless steels caused by increasing the chromium content in the alloy arises because there is an increased enhancement of chromium in the film and the... [Pg.1205]

Two ions of the transition metal take part in this reaction. However, in the case of supported one-component catalysts the formation of the active bond seems to occur on the interaction of the monomer with isolated ions of the transition metal. That may be illustrated by the data showing that the activity of chromium oxide catalysts decreases linearly with decreasing chromium content (or even increases per chromium ion) to the rather low (0.01%) chromium concentrations on the catalyst surface (62, 69). In... [Pg.204]

The corrosion of stainless steel in 0.1 mol-1 NaCl solutions at open circuit potential was studied in detail by Bruesch et al. [106] using XPS in combination with a controlled sample transfer system [38]. It was verified by XPS analysis that the passivating film contains chromium oxide. The position and the height of the Cr concentration maximum depends critically on the bulk chromium content of the steel. Significant variations in the electrode passivation properties were observed at a Cr concentration of 12%, while the film behaviour was found to be rather independent of the other components like Mo, Ni, Cu. From the fact that the film structures and... [Pg.118]

The addition of a small amount of chromium at concentrations less than 1%, increase the oxidation rate proportionately to the chromium content. This is to be expected since the replacement of three nickel ions in NiO by two chromium ions in Cr203 will introduce one cation vacancy/Cr203 molecule. [Pg.255]


See other pages where Chromium content oxidation is mentioned: [Pg.122]    [Pg.124]    [Pg.383]    [Pg.397]    [Pg.399]    [Pg.120]    [Pg.126]    [Pg.128]    [Pg.256]    [Pg.258]    [Pg.71]    [Pg.139]    [Pg.518]    [Pg.532]    [Pg.611]    [Pg.1009]    [Pg.1022]    [Pg.1026]    [Pg.1044]    [Pg.1053]    [Pg.1089]    [Pg.1197]    [Pg.1211]    [Pg.374]    [Pg.10]    [Pg.31]    [Pg.296]    [Pg.389]    [Pg.81]    [Pg.256]    [Pg.258]    [Pg.183]    [Pg.270]    [Pg.134]    [Pg.282]   
See also in sourсe #XX -- [ Pg.598 ]




SEARCH



Chromium oxidants

Chromium oxide

Chromium oxids

Oxides chromium oxide

© 2024 chempedia.info