Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chorismic acid phenylalanine from

Thirty-four naturally occurring compounds that incorporate the oxazole moiety have been isolated thus far. The sources are diverse—plants of the families Gramineae and Rutaceae, nudibranch egg masses, and microorganisms, the latter having furnished the majority of the compounds. With three exceptions, the marine and bacterial oxazoles appear to have been formed from peptides of aliphatic amino acids, while the oxazoles of the Gramineae and Rutaceae arise from the chorismic acid-phenylalanine pathway. The oxazoles have not been... [Pg.259]

Biological examples of pericyclic reactions are relatively rare, although one much-studied example occurs during biosynthesis in bacteria of the essential amino acid phenylalanine. Phenylalanine arises from the precursor chorismate,... [Pg.1194]

The flavonoids, which comprise the largest group of these natural products, are derived from a mixed acetate-shikimate pathway. A shikimate-derived C6-C3 unit combines with a six-carbon polyketide chain to provide the open-chain precursor (685) of the group. The derivation of p-hydroxycinnamic add (p-coumaric acid), the C6-C3 component, from shikimic acid proceeds through chorismic acid, prephenic acid and phenylalanine. [Pg.874]

The aromatic amino acids, phenylalanine, tryptophan, and tyrosine, are all made from a common intermediate chorismic acid. Chorismic acid is made by the condensation of erythrose-4-phosphate and phosphoenol pyruvate, followed by dephosphorylation and ring closure, dehydration and reduction to give shikimic acid. Shikimic acid is phosphorylated by ATP and condenses with another phosphoenol pyruvate and is then dephosphorylated to give chorismic acid. [Pg.86]

At the branching point of chorismic acid, either anthranilic acid, the precursor of tryptophan, or prephenic acid, the precursor of phenylalanine, itself the precursor of tyrosine and dopa (3,4-dihydroxy-phenylalanine), is formed (Fig. 10). Phosphorylation at the 3-position, condensation with phosphoenolpyru-vate, and elimination of phosphoric acid yields choris-mate from shikimate. Chorismate is also the precursor of a number of simple, and very important, aromatic compounds, including salicylic acid, 4-amino-benzoic acid (PABA), a constituent of folic acid, and 2,3-dihydroxybenzoic acid, a key acylating group of enterobactin. [Pg.233]

D. L. Siehl, The Biosynthesis ot Tryptophan, Tyrosine and Phenylalanine from Chorismate. In Plant Amino Acids. Biochemistry and Biotechnology] B. K. Singh, Ed. Marcel Dekker New York, 1999 pp 171-204. [Pg.597]

Prephenlc Acid, l-Carboxy.4-hydroxy-< -oxo-2.5-cyclohexadiene-1-propanoic acid l-carboxy-4-hydraxy-2,S-cyclohexadiene-l-pyruvic acid, C,0H1 Ot mol wt 226.18. C 53.10%, H 4.46%, O 42.44%. Non-aromatic biosynthetic in -termediate that represents a secondary branch-point in the pathway from chorismic acid to phenylalanine and tyrosine, q.q.y., in many organisms. Isoln from cultures of mutant Escherichia coti B. D. Davis, Science 118, 251 (1953). [Pg.1227]

Phenolic compounds include a wide range of secondary metabolites that are biosynthesised from carbohydrates through the shikimate pathway [14]. This is the biosynthetic route to the aromatic amino acids, phenylalanine, tyrosine, and tryptophan, and only occurs in microorganisms and plants. In the first step, the glycolytic intermediate phosphoenol pyruvate and the pentose phosphate intermediate erythrose-4-phosphate are condensed to 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), a step catalysed by DAHP synthase. Intermediates of the shikimate pathway are 3-dehydroquinate, shikimate, and chorismate (Fig. 1). Phenylalanine is biosynthesised from chorismate, and from phenylalanine all the phenylpropanoids. Quinate is produced from 3-dehydroquinate and incorporated into chlorogenic and isochlorogenic acids (caffeoyl quinic acids) by combination with caffeic acid. Gallic acid is produced from shikimate. [Pg.740]

Chorismate is an intermediate in the biosynthesis of the aromatic amino acids tryptophan, phenylalanine, and tyrosine. Mammals do not synthesize these amino acids bom chorismate. Instead, they obtain the essential aromatic amino acids tryptophan and phenylalanine from the diet, and they can synthesize tyrosine from phenylalanine. Glyphosate is an effective herbicide because it prevents synthesis of aromatic amino acids in plants. But the compound has no effect on mammals because they have no active pathway for de novo aromatic amino acid synthesis. [Pg.439]

Further elimination of inorganic phosphate from 5-enolpyruvoylshikimate 3-phosphate in the final step of the shikimic acid pathway yields chorismate 12, a key intermediate in the biosynthesis of numerous aromatic plant metabolites including the aromatic acid phenylalanine, tyrosine, and tryptophan. [Pg.257]

Both phenylalanine and tyrosine are derived from chorismic acid, which is itself derived from shikimic acid-3-phosphate through the shikimic acid pathway. In this sequence, chorismic acid is first transformed into prephenic acid by chorismate mutase. If prephenic acid is converted into phenylpyruvic acid by... [Pg.21]

On the other hand, chorismic acid, which is derived from shikimic acid, is also a precursor of phenylalanine and tyrosine, which are essential amino acids [1]. Among the alkaloids, there is a group derived specifically from anthranilic acid, and this chapter presents some of these alkaloids. [Pg.163]

Use of Mutants in Biosynthetic Studies Formation of Chorismic Acid Derivatives of Chorismic Acid Biosynthesis of Tryptophan Indole 3-Acetic Acid Avenalumins from Oats DIMBOA and Related Compounds Biosynthesis of Phenylalanine and Tyrosine Compounds Derived from Shikimic Pathway Intermediates... [Pg.94]

From chorismic acid, four major pathways lead to essential metabolites tryptophan, phenylalanine and tyrosine, p-aminobenzoic acid and the folate group of coenzymes, and the isoprenoid quinones (Fig. 7.2). Numerous secondary compounds in plants and other organisms are formed from products and intermediates of these pathways. [Pg.97]

In both bacteria and plants, two additional amino acids, phenylalanine and tyrosine, are formed from chorismic acid. From chorismate, two separate routes diverge and lead to the amino acids L-phenylalanine and L-tyrosine. However, the pathways in bacteria and plants are distinct and involve different intermediates. Both of these pathways pass through the same intermediate, prephenic acid (26) (Fig. 7.9) (Floss,... [Pg.101]

Chorismic acid is the key branch point intermediate in the biosynthesis of aromatic amino acids in microorganisms and plants (Scheme 1.1a) [1]. In the branch that leads to the production of tyrosine and phenylalanine, chorismate mutase (CM, chorismate-pyruvate mutase, EC 5.4.99.5) is a key enzyme that catalyzes the isomerization of chorismate to prephenate (Scheme 1.1b) with a rate enhancement of about lO -lO -fold. This reaction is one of few pericyclic processes in biology and provides a rare opportunity for understanding how Nature promotes such unusual transformations. The biological importance of the conversion from chorismate to prephenate and the synthetic value of the Claisen rearrangement have led to extensive experimental investigations [2-43]. [Pg.1]

The synthesis of tryptophan in microorganisms is affected at several levels by end-product inhibition. Thus, end-product feedback inhibition partly regulates the synthesis of chorismic acid which is the final product of the common aromatic pathway and serves as a substrate for the first reaction in the tryptophan-synthesizing branch pathway (see Fig. 2). Regulation of the common aromatic pathway was recently reviewed by Doy [72]. The first enzyme of the common aromatic pathway, 3-deoxy-D-flrah/>jo-heptulosonate 7-phosphate synthetase (DAHPS), has been reported to exist as at least three isoenzymes, each specifically susceptible to inhibition by one of the aromatic amino acid end products (tyrosine, phenylalanine, and tryptophan), in E. coli (see reference [3]). It should be noted that many reports have indicated that in E. coli the DAHPS (trp), the isoenzyme whose synthesis is repressed specifically by tryptophan, was not sensitive to end-product inhibition by tryptophan. Recently, however, tryptophan inhibition of DAHPS (trp) activity has been demonstrated in E. coli [3,73,74]. The E. coli pattern, therefore, represents an example of enzyme multiplicity inhibition based on the inhibition specificity of isoenzymes. It is interesting to note the report by Wallace and Pittard [75] that even in the presence of an excess of all three aromatic amino acids enough chorismate is synthesized to provide for the synthesis of the aromatic vitamins whose individual pathways branch from this last common aromatic intermediate. In S. typhimurium, thus far, only two DAHPS isoenzymes, DAHPS (tyr) and DAHPS (phe) have been identified as sensitive to tyrosine and phenylalanine, respectively [76]. [Pg.400]

L-Phenylalanine and L-tyrosine are formed from chorismic acid (D 8). Two pathways exist for the biosynthesis of L-tyrosine, the 4-hydroxyphenylpyruvate and the L-pretyrosine (arogenate) route (Fig. 266). Both pathways occur in microorganisms and plants. Higher animals are unable to synthesize L-phenyl-alanine and L-tyrosine de novo, but hydroxylate L-phenylalanine to L-tyrosine. Certain insects, however, contain colonies of bacteria in the fat body synthesizing L-phenylalanine and L-tyrosine, which may be used by their hosts. [Pg.408]

Bacteria, fungi, and plants share a common pathway for the biosynthesis of aromatic amino acids with shikimic acid as a common intermediate and therefore named after it—the shikimate pathway. Availability of shikimic acid has proven to provide growth requirements to tryptophan, tyrosine, and phenylalanine triple auxotrophic bacterial strains. Chorismate is also the last common precursor in the aromatic amino acid biosynthetic pathway, but the pathway is not named after it, as it failed to provide growth requirements to the triple auxotrophs. The aromatic biosynthetic pathway starts with two molecules of phosphoenol pyruvate and one molecule of erythrose 4-phosphate and reach the common precursor, chorismate through shikimate. From chorismate, the pathway branches to form phenylalanine and tyrosine in one and tryptophan in another. Tryptophan biosynthesis proceeds from chorismate in five steps in all organisms. Phenylalanine and tyrosine can be produced by either or both of the two biosynthetic routes. So phenylalanine can be synthesized from arogenate or phenylpyruvate whereas tyrosine can be synthesized from arogenate or 4-hydroxy phenylpyruvate. [Pg.465]

The further biosynthetic pathway to anthocyanins involves the formation of L-phenylalanine from chorismic acid. L-phenylalanine is then converted to trans-cmrL mic acid through fra 5-elimination of ammonia. In a second step fra 5-cinnamic acid is hydroxylated and activated to yield 4-coumaroyl-CoA. In the next step, 4-coumaroyl-CoA is condensed with 3 molecules of malonyl-CoA to yield naringenin chalcone. naringenin chalcone is rapidly and stereospecifically isomerized to naringenin. [Pg.119]


See other pages where Chorismic acid phenylalanine from is mentioned: [Pg.316]    [Pg.97]    [Pg.152]    [Pg.601]    [Pg.485]    [Pg.129]    [Pg.159]    [Pg.33]    [Pg.295]    [Pg.184]    [Pg.85]    [Pg.485]    [Pg.51]    [Pg.295]    [Pg.302]    [Pg.512]    [Pg.521]    [Pg.156]    [Pg.690]    [Pg.419]    [Pg.391]    [Pg.414]    [Pg.261]    [Pg.278]    [Pg.126]    [Pg.11]    [Pg.14]   
See also in sourсe #XX -- [ Pg.11 , Pg.188 ]

See also in sourсe #XX -- [ Pg.11 , Pg.188 ]




SEARCH



Chorismate

Chorismate acids

© 2024 chempedia.info