Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes chorismate mutase

Competitive experiments with 2H-, 13C- and 180-labelled chorismate derivatives and three different chorismate mutase enzymes have shown that in all catalysed and non-catalysed Claisen rearrangements a non-synchronous, concerted, pericyclic transition state is involved, with C-O bond cleavage considerably in advance of C-C bond formation. Some evidence has suggested that the ionic active site of the enzymes may polarize the transition state more than occurs in solution. Similar findings apply to the retro-ene fragmentation of chorismate to 4-hydroxybenzoate.17... [Pg.404]

The transition state for the enzymatic reaction has been shown to have a chairlike geometry as well [61], and conformationally constrained compounds that mimic this structure, such as the oxabicyclic dicarboxylic acid 1 (Fig. 3.6), are good inhibitors of chorismate mutase enzymes [62 - 64], How a protein might stabilize this high-energy species has been a matter of some debate. Recently, heavy atom isotope effects were used to characterize the structure of the transition state bound to BsCM [65]. A very... [Pg.37]

Stereochemical studies indicate that the branch for the pathway leading to tyrosine and that leading to phenylalanine of the chorismate mutase enzyme systems function with the same stereochemistry (Floss, 1986) (Fig. 7.10). [Pg.101]

Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62). Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62).
The enzyme chorismate mutase was found to accelerate the Claisen rearrangement of chorismic acid.147 For many years, the origin of the acceleration perplexed and intrigued chemists and biochemists. Polar... [Pg.411]

The differences in the rate constant for the water reaction and the catalyzed reactions reside in the mole fraction of substrate present as near attack conformers (NACs).171 These results and knowledge of the importance of transition-state stabilization in other cases support a proposal that enzymes utilize both NAC and transition-state stabilization in the mix required for the most efficient catalysis. Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82%, 57%, and 1% of chorismate conformers were found to be NAC structures (NACs) in water, methanol, and the gas phase, respectively.172 The fact that the reaction occurred faster in water than in methanol was attributed to greater stabilization of the TS in water by specific interactions with first-shell solvent molecules. The Claisen rearrangements of chorismate in water and at the active site of E. coli chorismate mutase have been compared.173 It follows that the efficiency of formation of NAC (7.8 kcal/mol) at the active site provides approximately 90% of the kinetic advantage of the enzymatic reaction as compared with the water reaction. [Pg.415]

In this contribution, we describe work from our group in the development and application of alternatives that allow the explicit inclusion of environment effects while treating the most relevant part of the system with full quantum mechanics. The first methodology, dubbed MD/QM, was used for the study of the electronic spectrum of prephenate dianion in solution [18] and later coupled to the Effective Fragment Potential (EFP) [19] to the study of the Claisen rearrangement reaction from chorismate to prephenate catalyzed by the chorismate mutase (CM) enzyme [20]. [Pg.3]

The Shikimate pathway is responsible for biosynthesis of aromatic amino acids in bacteria, fungi and plants [28], and the absence of this pathway in mammals makes it an interesting target for designing novel antibiotics, fungicides and herbicides. After the production of chorismate the pathway branches and, via specific internal pathways, the chorismate intermediate is converted to the three aromatic amino acids, in addition to a number of other aromatic compounds [29], The enzyme chorismate mutase (CM) is a key enzyme responsible for the Claisen rearrangement of chorismate to prephenate (Scheme 1-1), the first step in the branch that ultimately leads to production of tyrosine and phenylalanine. [Pg.4]

Besides the obvious biological interest, chorismate mutase is important for being a rare example of an enzyme that catalyses a pericyclic reaction (the Claisen rearrangement), which also occurs in solution without the enzyme, providing a unique... [Pg.4]

Figure 1-4. Energy profiles for the reaction of chorismate to prephenate. (a) Profile in vacuum for the forward (squares) and reverse (filled circles) reactions, (b) Profiles for forward reaction in water (filled circles), and in the enzyme with only the substrate in the QM zone (squares) and with substrate plus chorismate mutase side chains glu78 and arg90 in the QM zone (diamonds)... Figure 1-4. Energy profiles for the reaction of chorismate to prephenate. (a) Profile in vacuum for the forward (squares) and reverse (filled circles) reactions, (b) Profiles for forward reaction in water (filled circles), and in the enzyme with only the substrate in the QM zone (squares) and with substrate plus chorismate mutase side chains glu78 and arg90 in the QM zone (diamonds)...
Chorismate mutase catalyzes the Claisen rearrangement of chorismate to prephenate at a rate 106 times greater than that in solution (Fig. 5.5). This enzyme reaction has attracted the attention of computational (bio)chemists, because it is a rare example of an enzyme-catalyzed pericyclic reaction. Several research groups have studied the mechanism of this enzyme by use of QM/MM methods [76-78], It has also been studied with the effective fragment potential (EFP) method [79, 80]. In this method the chemically active part of an enzyme is treated by use of the ab initio QM method and the rest of the system (protein environment) by effective fragment potentials. These potentials account... [Pg.171]

The partitioning of the system in a QM/MM calculation is simpler if it is possible to avoid separating covalently bonded atoms at the border between the QM and the MM regions. An example is the enzyme chorismate mutase [39] for which the QM region could include only the substrate, because the enzyme does not chemically catalyze this pericyclic reaction. In studies of enzyme mechanisms, however, this situation is exceptional, and usually it will be essential, or desirable, to include parts of the protein (for example catalytic residues) in the QM region of a QM/MM calculation, i.e. the boundary between the QM and MM regions will separate covalently bonded atoms (Fig. 6.1). [Pg.180]

Schultz and coworkers (Jackson et a ., 1988) have generated an antibody which exhibits behaviour similar to the enzyme chorismate mutase. The enzyme catalyses the conversion of chorismate [49] to prephenate [50] as part of the shikimate pathway for the biosynthesis of aromatic amino acids in plants and micro-organisms (Haslam, 1974 Dixon and Webb, 1979). It is unusual for an enzyme in that it does not seem to employ acid-base chemistry, nucleophilic or electrophilic catalysis, metal ions, or redox chemistry. Rather, it binds the substrate and forces it into the appropriate conformation for reaction and stabilizes the transition state, without using distinct catalytic groups. [Pg.57]

The conversion of [49] into [50] involves a Claisen rearrangement. Once this was realized it was less surprising that no specific catalytic groups on the enzyme are involved. Support for the Claisen-type mechanism comes from the inhibition shown by the bicyclic dicarboxylate [51], prepared by Bartlett and Johnson (1985) as an analogue of the presumed transition state [52], This same structure [51], coupled through the hydroxyl group to a small protein, was used as a hapten to induce antibodies, one (out of eight) of which mimics the behaviour of chorismate mutase, albeit less efficiently (Table 7). [Pg.57]

Aryl side chain containing L-a-amino acids, such as phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), are derived through the shikimate pathway. The enzymatic transformation of phosphoenolpyr-uvate (PEP) and erythro-4-phosphate, through a series of reactions, yields shikimate (Scheme 2). Although shikimate is an important biosynthetic intermediate for a number of secondary metabolites, this chapter only describes the conversion of shikimate to amino acids containing aryl side chains. In the second part of the biosynthesis, shikimate is converted into chorismate by the addition of PEP to the hydroxyl group at the C5 position. Chorismate is then transformed into prephenate by the enzyme chorismate mutase (Scheme 3). [Pg.7]

This enzyme [EC 4.2.1.51] catalyzes the conversion of prephenate to phenylpyruvate, water, and carbon dioxide. This enzyme in enteric bacteria also possesses a chorismate mutase activity and converts chorismate into prephenate. [Pg.570]

Figure 1. Hypothetical mechanism for shuttling of intermediates of the common aromatic pathway between plastidic and cytosolic compartments. Enzymes denoted with an asterisk (DAHP synthase-Co, chorismate mutase-2, and cytosolic anthranilate synthase) have been demonstrated to be isozymes located in the cytosol. DAHP molecules from the cytosol are shown to be shuttled into the plastid compartment in exchange for EPSP molecules synthesized within the plastid. Abbreviations C3, phosphoenolpyruvate C4, erythrose 4-P DAHP, 3-deoxy-D-arabino-heptulosonate 7-phosphate EPSP, 5-enolpyruvylshikimate 3-phosphate CHA, chorismate ANT, anthranilate TRP, L-tryptophan PPA, prephenate AGN, L-arogenate TYR, L-tyrosine and PHE, L-phenylalanine. Figure 1. Hypothetical mechanism for shuttling of intermediates of the common aromatic pathway between plastidic and cytosolic compartments. Enzymes denoted with an asterisk (DAHP synthase-Co, chorismate mutase-2, and cytosolic anthranilate synthase) have been demonstrated to be isozymes located in the cytosol. DAHP molecules from the cytosol are shown to be shuttled into the plastid compartment in exchange for EPSP molecules synthesized within the plastid. Abbreviations C3, phosphoenolpyruvate C4, erythrose 4-P DAHP, 3-deoxy-D-arabino-heptulosonate 7-phosphate EPSP, 5-enolpyruvylshikimate 3-phosphate CHA, chorismate ANT, anthranilate TRP, L-tryptophan PPA, prephenate AGN, L-arogenate TYR, L-tyrosine and PHE, L-phenylalanine.
To what extent is the response of cytosolic and plastidic isozymes of the shikimate pathway coordinated or coupled with one another and to alterations in expression of enzymes of the flavonoid and phenylpropanoid-pathway segments Some of the emerging information is given in Figure 6. Thus, light induction, well known to induce PAL and enzymes of the flavonoid pathway, also induces both DS-Mn and DS-Co in parsley cell cultures (49). However, only the cytosolic CM-2 (and not the plastidic CM-1) was induced. Fungal elicitor was reported to induce only DS-Mn—not DS-Co or either of the chorismate mutase isozymes (49). Previous studies... [Pg.99]

Figure 6. Effects of various treatments or manipulations upon levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and the separately compartmented isozymes of DAHP synthase and chorismate mu-tase. Upwardly pointed arrows indicate a positive response (enzyme elevation) to the indicated treatment, whereas horizontal arrows indicate no change in enzyme level. References documenting the results shown are line 1 (54 our results with DAHP synthase and chorismate mutase isozymes) line 2 (49,55) line 3 (49,50,56) line 4 (57) line 5 (51) line 6 (52). Figure 6. Effects of various treatments or manipulations upon levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and the separately compartmented isozymes of DAHP synthase and chorismate mu-tase. Upwardly pointed arrows indicate a positive response (enzyme elevation) to the indicated treatment, whereas horizontal arrows indicate no change in enzyme level. References documenting the results shown are line 1 (54 our results with DAHP synthase and chorismate mutase isozymes) line 2 (49,55) line 3 (49,50,56) line 4 (57) line 5 (51) line 6 (52).
We have examined the time course of changes induced in isozymes of chorismate mutase and DAHP synthase in potato tubers following mechanical wounding (Table III). In each case both isozymes responded—the plastidic isozyme responding sooner and to a greater extent than the cytosolic isozyme. All five of the other pathway enzymes so far examined were induced by mechanical wounding. [Pg.103]

Claisen rearrangement plays an important part in the biosynthesis of several natural products. For example, the chorismate ion is rearranged to the prephenate ion by the Claisen rearrangement, which is catalysed by the enzyme chorismate mutase. This prephenate ion is a key intermediate in the shikimic acid pathway for the biosynthesis of phenylalanine, tyrosine and many other biologically important natural products. [Pg.282]

The enzyme is organized into two structural domains,201 one of which binds FAD and the other NADP+. Similar single-electron transfers through flavoproteins also occur in many other enzymes. Chorismate mutase, an important enzyme in biosynthesis of aromatic rings (Chapter 25), contains bound FMN. Its function is unclear but involves formation of a neutral flavin radical.276 277... [Pg.794]

Chemical properties appropriate to a compound found at a branch point of metabolism are displayed by chorismic acid. Simply warming the compound in acidic aqueous solution yields a mixture of prephen-ate and para-hydroxybenzoate (corresponding to reactions h and l of Fig. 25-1). Note that the latter reaction is a simple elimination of the enolate anion of pyruvate. As indicated in Fig. 25-1, these reactions correspond to only two of several metabolic reactions of the chorismate ion. In E. coli the formation of phe-nylpyruvate (steps h and i, Fig. 25-1) is catalyzed by a single protein molecule with two distinctly different enzymatic activities chorismate mutase and prephenate dehydratase.34-36 However, in some organisms the enzymes are separate.37 Both of the reactions catalyzed by these enzymes also occur spontaneously upon warming chorismic acid in acidic solution. The chorismate mutase reaction, which is unique in its mechanism,373 is discussed in Box 9-E. Stereochemical studies indicate that the formation of phenylpyruvate in Fig. 25-1, step z, occurs via a... [Pg.1424]

In E. coli and many other bacteria a second bifunctional enzyme, chorismate mutase-prephenate dehydrogenase causes the isomerization of chorismate and the oxidative decarboxylation of prephenate to p-hydroxyphenylpyruvate (steps h and /c, Fig. 25-l).39 The latter can be converted by transamination to tyrosine.40-42... [Pg.1425]

Using the transition-state analog shown on p. 485 a catalytic antibody with chorismate mutase activity was isolated. Many antibodies catalyzing additional reactions have also been found. Although they are usually less active than natural enzymes, in some cases they approach enzymatic rates. Furthermore, they may catalyze reactions for which no known enzymes exist.h... [Pg.1842]

Figure 3-5. Biosynthesis of salicylic acid. The enzymes involved in this pathway are (a) chorismate mutase (E.C. 5.4.99.5), (b) prephenate aminotransferase (E.C. 2.6.1.78 and E.C. 2.6.1.79), (c) arogenate dehydratase (E.C. 4.2.1.91), (d) phenylalanine ammonia lyase (E.C. 4.3.1.5), (e) presumed P-oxidation by a yet to be identified enzyme, (f) benzoic acid 2-hydroxylase, (g) isochorismate synthase (E. C. 5.4.4.2), and (h) a putative plant pyruvate lyase. Figure 3-5. Biosynthesis of salicylic acid. The enzymes involved in this pathway are (a) chorismate mutase (E.C. 5.4.99.5), (b) prephenate aminotransferase (E.C. 2.6.1.78 and E.C. 2.6.1.79), (c) arogenate dehydratase (E.C. 4.2.1.91), (d) phenylalanine ammonia lyase (E.C. 4.3.1.5), (e) presumed P-oxidation by a yet to be identified enzyme, (f) benzoic acid 2-hydroxylase, (g) isochorismate synthase (E. C. 5.4.4.2), and (h) a putative plant pyruvate lyase.
The reaction, which proceeds via a conformationally tight chair-type transition state, is clearly entropically dominated, with a AS of -13 eu. Whereas the known enzyme chorismate mutase from E. coli achieves a 3 x 106-fold accelerated catalysis, the antibody reaches a 104-fold enhancement. A decrease of AS to almost 0 eu points to the presence of an entropy trap. [Pg.518]

Figure 4.11). This reaction, a Claisen rearrangement, transfers the PEP-derived side-chain so that it becomes directly bonded to the carbocycle, and so builds up the basic carbon skeleton of phenylalanine and tyrosine. The reaction is catalysed in nature by the enzyme chorismate mutase, and, although it can also occur thermally, the rate increases some 106-fold in the presence of the enzyme. The enzyme achieves this by binding the pseudoaxial conformer of chorismic acid, allowing a transition state with chairlike geometry to develop. [Pg.128]


See other pages where Enzymes chorismate mutase is mentioned: [Pg.241]    [Pg.753]    [Pg.1115]    [Pg.302]    [Pg.241]    [Pg.753]    [Pg.1115]    [Pg.302]    [Pg.243]    [Pg.8]    [Pg.152]    [Pg.164]    [Pg.172]    [Pg.268]    [Pg.312]    [Pg.201]    [Pg.485]    [Pg.41]    [Pg.82]    [Pg.82]    [Pg.268]    [Pg.34]    [Pg.35]    [Pg.115]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 ]




SEARCH



Chorismate

Chorismate mutase

Enzyme inhibitor chorismate mutase

Mutase

© 2024 chempedia.info