Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloro Polymers

The conventional route to prepare I generally involves a high temperature melt polymerization of hexachlorocyclotriphosphazene, or trimer (IV). Recent studies have demonstrated the effectiveness of various acids and organometalllcs as catalysts for the polymerization of IV (8). Alternate routes for the preparation of chloro-polymer which do not involve the ring opening polymerization of trimer have been reported in the patent literature (9. 10). These routes involve a condensation polymerization process and may prove to be of technological importance for the preparation of low to moderate molecular weight polyphosphazenes. [Pg.278]

Ethylenecarboxamide. SeeAcrylamide Ethylene carboxylic acid. See Acrylic acid Ethylene chloride. See Ethylene dichloride Ethylene, chloro-, polymer. See Polyvinyl chloride... [Pg.1110]

Synonyms 1,3-Butadiene, 2-chloro-, polymers 2-Chloro-1,3-butadiene homopolymer Chlorobutadiene polymer 2-Chloro-1,3-butadiene polymer Chloroprene polymer Chloroprene resin Chloroprene rubber CR Neoprene Neoprene rubber Poly (2-chlorobutadiene) Poly (2-chloro-1,3-butadiene) Poly (chloroprene)... [Pg.1291]

CAS 8063-94-3 9002-86-2 51248-43-2 93050-82-9 EINECS/ELINCS 208-750-2 Synonyms Atactic poly (vinyl chloride) Chloroethene homopolymer Chloroethylene polymer Ethene, chloro-, homopolymer Ethylene, chloro-, polymer Expanded polyvinyl chloride Poly (chloroethylene) Polyvinyl chloride latex Polyvinyl chloride resin PVC... [Pg.3601]

The first phosphazene polymers containing carbon (79), sulfur (80,81), and even metal atoms (82) in the backbone have been reported. These were all prepared by the ring-opening polymerization of partially or fully chloro-substituted (or fluoro-substituted) trimers containing one hetero atom substituting for a ring-phosphoms atom in a cyclotriphosphazene-type ring. [Pg.260]

A/-Chloro fatty acid amides have been synthesized from the direct halogenation of the amide in boiling water (28). They are useful as reactive intermediates for further synthesis. Fluorination has also been reported by treating the fatty amide with fluorine-containing acid reagents at 200 °C to reach a fluorinated amide with less reactivity toward fluorocarbon polymers (29). [Pg.184]

Almost all IDA derived chain extenders are made through ortho-alkylation. Diethyltoluenediamine (DE I DA) (C H gN2) (53), with a market of about 33,000 t, is the most common. Many uses for /-B I DA have been cited (1,12). Both DE I DA and /-B I DA are especially useful in RIM appHcations (49,53—55). Di(methylthio)-TDA, made by dithioalkylation of TDA, is used in cast urethanes and with other TDI prepolymers (56). Styrenic alkylation products of TDA are said to be useful, eg, as in the formation of novel polyurethane—polyurea polymers (57,58). Progress in understanding aromatic diamine stmcture—activity relationships for polyurethane chain extenders should allow progress in developing new materials (59). Chlorinated IDA is used in polyurethane—polyurea polymers of low hysteresis (48) and in reinforced polyurethane tires (60). The chloro-TDA is made by hydrolysis of chloro-TDI, derived from TDA (61). [Pg.239]

Chloroprene Elastomers. Polychloroprene is a polymer of 2-chloro-l,3-butadiene. The elastomer is largely composed of the trans isomer. There are two basic polymer types the W-type and the G-type. G-types are made by using a sulfur-modified process W-types use no sulfur modification. As a result, G-types possess excellent processing and dynamic properties, and tend to be used in V-belts. However, they have poorer aging properties than W-types. The W-types tend to be used in appHcations requiring better aging, such as roUs and mechanical goods (see Elastomers, SYNTHETIC-POLYCm.OROPRENE). [Pg.233]

The manufacture of polydimethylsiloxane polymers is a multistep process. The hydrolysis of the chlorosilanes obtained from the direction process yields a mixture of cycHc and linear sdanol-stopped oligomers, called hydrolysate (eq. 7) (21). In some cases, chloro-stopped polymers can also be obtained (59). [Pg.45]

Poly(vinyl chloride) is Hsted on the TSCA inventory and the Canadian Domestic Substances List (DSL) as ethene, chloro-, homopolymer [9002-86-2]. Because polymers do not appear on the European Community Commercial Chemical Substances listing or EINECS, poly(vinyl chloride) is listed through its monomer, vinyl chloride [75-01-4]. In the United States, poly(vinyl chloride) is an EPA hazardous air pollutant under the Clean Air Act Section 112 (40 CER 61) and is covered under the New Jersey Community Right-to-Know Survey N.J. Environmental Hazardous Substances (EHS) List as "chloroethylene, polymer" with a reporting threshold of 225 kg (500 lb). [Pg.508]

Chloroprene (2-chloro-1,3-butadiene), [126-99-8] was first obtained as a by-product from tbe synthesis of divinylacetylene (1). Wben a mbbery polymer was found to form spontaneously, investigations were begun tbat prompdy defined tbe two methods of synthesis that have since been the basis of commercial production (2), and the first successbil synthetic elastomer. Neoprene, or DuPrene as it was first called, was introduced in 1932. Production of chloroprene today is completely dependent on the production of the polymer. The only other use accounting for significant volume is the synthesis of 2,3-dichloro-l,3-butadiene, which is used as a monomer in selected copolymerizations with chloroprene. [Pg.37]

Additives used include plasticisers such as diphenyl diethyl ether, ultraviolet light absorbers such as 5-chloro-2-hydroxybenzophenone (1-2% on the polymer) and stabilisers such as phenoxy propylene oxide. [Pg.468]

Polychloroprene rubber (CR) is the most popular and versatile of the elastomers used in adhesives. In the early 1920s, Dr. Nieuwland of the University of Notre Dame synthesized divinyl acetylene from acetylene using copper(l) chloride as catalyst. A few years later, Du Pont scientists joined Dr. Nieuwland s research and prepared monovinyl acetylene, from which, by controlled reaction with hydrochloric acid, the chloroprene monomer (2-chloro-l, 3-butadiene) was obtained. Upon polymerization of chloroprene a rubber-like polymer was obtained. In 1932 it was commercialized under the tradename DuPrene which was changed to Neoprene by DuPont de Nemours in 1936. [Pg.589]

E.I. Du Pont de Nemours, Colloidal stable solvent cement compositions comprising chloro-prene polymers, phenolic resins and polyisocyanate, U.S. Patent 3,318,834, 9 May, 1967. [Pg.675]

Polymer-supported tetraphenylphosphonium bromide is a recyclable catalyst for halogen-exchange reactions. The reaction of 1 equivalent of chloro-2,4-dinitrobenzene with 1 5 equivalents of spray-dned potassium fluoride and 0.1 equivalent of this catalyst in acetonitnle at 80 C for 12 h gives 2,4-dinitro-fluorobenzene m 98% yield An 11% yield is obtained without the catalyst [3 /]. [Pg.181]

As the demand for rubber increased, so did the chemical industry s efforts to prepare a synthetic substitute. One of the first elastomers (a synthetic polymer that possesses elasticity) to find a commercial niche was neoprene, discovered by chemists at Du Pont in 1931. Neoprene is produced by free-radical polymerization of 2-chloro-1,3-butadiene and has the greatest variety of applications of any elastomer. Some uses include electrical insulation, conveyer belts, hoses, and weather balloons. [Pg.408]

Polymers containing three-coordinate sulfur(IV) are generally hydrolytically sensitive even when the chloro substituents are replaced... [Pg.285]

Applications. Many applications have been proposed for polyphosphazenes, particularly the non-cyclic polymers of high molecular weight, but those with the most desirable properties are extremely expensive and costs will have to drop considerably before they gain widespread use (cf. silicones, p. 365). The cheapest compounds are the chloro series... [Pg.542]

The thermotropic aromatic main chain liquid crystalline polymers are also prepared by the phase transfer catalyzed aromatic nucleophilic polymerization [87]. Polyetherification of bis(4-chloro-3-nitrophenyl) sulfone with mesogenic aromatic diols is shown below ... [Pg.42]

In conclusion, it may be said that a lot of literature has been published that favors the Frye and Horst mechanism of stabilization. Most of this is based on studies done on low-molecular weight model compound for al-lylicchlorines in PVC, i.e., 4-chloro-2-hexene. Although the large contribution of these studies toward understanding the mechanism of stabilization of PVC cannot be denied, the extrapolation of these results to the processes involved in the actual stabilization of the polymer should be done with extreme care. The polymer represents a complex mixture of macromolecules, which in the melt is not only physically a very different system compared to the low-molecular weight model compound, but invariably contains, apart from stabilizers, other additives, such as plasticizers, lubricants, processing aids, etc., that further complicate the situation. The criticism of the Frye and Horst mechanism is also based on solid experimental evidence, and hence, the controversy is still very much alive. [Pg.327]

Simple conjugated dienes used in polymer synthesis include 1,3-butadiene, chloroprene (Z-chloro-l -butadiene), and isoprene (2-methyl-l,3-butadiene). Isoprene has been prepared industrially by several methods, including the acid-catalyzed double dehydration of S-methyl-l/S-butanediol. [Pg.483]

There have been a number of different synthetic approaches to substituted PTV derivatives proposed in the last decade. Almost all focus on the aromatic ring as the site for substitution. Some effort has been made to apply the traditional base-catalyzed dehydrohalogenation route to PTV and its substituted analogs. The methodology, however, is not as successful for PTV as it is for PPV and its derivatives because of the great tendency for the poly(u-chloro thiophene) precursor spontaneously to eliminate at room temperature. Swager and co-workers attempted this route to synthesize a PTV derivative substituted with a crown ether with potential applications as a sensory material (Scheme 1-26) [123]. The synthesis employs a Fager condensation [124] in its initial step to yield diol 78. Treatment with a ditosylate yields a crown ether-functionalized thiophene diester 79. This may be elaborated to dichloride 81, but pure material could not be isolated and the dichloride monomer had to be polymerized in situ. The polymer isolated... [Pg.343]


See other pages where Chloro Polymers is mentioned: [Pg.376]    [Pg.264]    [Pg.1342]    [Pg.263]    [Pg.14]    [Pg.507]    [Pg.909]    [Pg.1003]    [Pg.1308]    [Pg.579]    [Pg.1710]    [Pg.99]    [Pg.311]    [Pg.376]    [Pg.264]    [Pg.1342]    [Pg.263]    [Pg.14]    [Pg.507]    [Pg.909]    [Pg.1003]    [Pg.1308]    [Pg.579]    [Pg.1710]    [Pg.99]    [Pg.311]    [Pg.92]    [Pg.331]    [Pg.368]    [Pg.151]    [Pg.45]    [Pg.456]    [Pg.667]    [Pg.793]    [Pg.1969]    [Pg.30]    [Pg.591]    [Pg.220]    [Pg.736]    [Pg.327]   


SEARCH



© 2024 chempedia.info