Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine dioxide thermal decomposition

Thermal Decomposition of GIO2. Chloiine dioxide decomposition in the gas phase is chaiacteiized by a slow induction period followed by a rapid autocatalytic phase that may be explosive if the initial concentration is above a partial pressure of 10.1 kPa (76 mm Hg) (27). Mechanistic investigations indicate that the intermediates formed include the unstable chlorine oxide, CI2O2. The presence of water vapor tends to extend the duration of the induction period, presumably by reaction with this intermediate. When water vapor concentration and temperature are both high, the decomposition of chlorine dioxide can proceed smoothly rather than explosively. Apparently under these conditions, all decomposition takes place in the induction period, and water vapor inhibits the autocatalytic phase altogether. The products of chlorine dioxide decomposition in the gas phase include chlorine, oxygen, HCl, HCIO, and HCIO. The ratios of products formed during decomposition depend on the concentration of water vapor and temperature (27). [Pg.481]

Acryhc elastomers are normally stable and not reactive with water. The material must be preheated before ignition can occur, and fire conditions offer no hazard beyond that of ordinary combustible material (56). Above 300°C these elastomers may pyrolize to release ethyl acrylate and other alkyl acrylates. Otherwise, thermal decomposition or combustion may produce carbon monoxide, carbon dioxide, and hydrogen chloride, and/or other chloiinated compounds if chlorine containing monomers are present ia the polymer. [Pg.478]

The reaction is carried out over a supported metallic silver catalyst at 250—300°C and 1—2 MPa (10—20 bar). A few parts per million (ppm) of 1,2-dichloroethane are added to the ethylene to inhibit further oxidation to carbon dioxide and water. This results ia chlorine generation, which deactivates the surface of the catalyst. Chem Systems of the United States has developed a process that produces ethylene glycol monoacetate as an iatermediate, which on thermal decomposition yields ethylene oxide [75-21-8]. [Pg.433]

Platinum Platinum-coated titanium is the most important anode material for impressed-current cathodic protection in seawater. In electrolysis cells, platinum is attacked if the current waveform varies, if oxygen and chlorine are evolved simultaneously, or if some organic substances are present Nevertheless, platinised titanium is employed in tinplate production in Japan s. Although ruthenium dioxide is the most usual coating for dimensionally stable anodes, platinum/iridium, also deposited by thermal decomposition of a metallo-organic paint, is used in sodium chlorate manufacture. Platinum/ruthenium, applied by an immersion process, is recommended for the cathodes of membrane electrolysis cells. ... [Pg.566]

The layer of titanium and ruthenium oxides usually is applied to a titanium substrate pyrolytically, by thermal decomposition (at a temperature of about 450°C) of an aqueous or alcoholic solution of the chlorides or of complex compounds of titanium and rathenium. The optimum layer composition corresponds to 25 to 30 atom % of ruthenium. The layer contains some quantity of chlorine its composition can be written as Ruq 2sTio 750(2- c)Cl r At this deposition temperature and Ru-Ti ratio, the layer is a poorly ordered solid solution of the dioxides of ruthenium and titanium. Chlorine is completely eliminated from the layer when this is formed at higher temperatures (up to 800°C), and the solid solution decomposes into two independent phases of titanium dioxide and ruthenium dioxide no longer exhibiting the unique catalytic properties. [Pg.547]

Action of chlorine trifluoride causes incandescence [1]. Manganese dioxide catalytically decomposes powerful oxidising agents, often violently. Dropped into cone, hydrogen peroxide, the powdered oxide may cause explosion [2], Either the massive or the powdered oxide explosively decomposes 92% peroxomonosulfuric acid [3], and mixtures with chlorates ( oxygen mixture , heated to generate the gas) may react with explosive violence [4], Cuban pyrolusite can be used in place of potassium dichromate to promote thermal decomposition of potassium chlorate in match-head formulations [5],... [Pg.1769]

Perchloric Acid. Several techniques have been employed in the manufacture of perchloric acid, including thermal decomposition of chloric acid, anodic oxidation of chloric add. irradiation of chlorine dioxide solutions, electrolysis of hydrochloric acid, oxidation of hypochlorites by ozone, ion exchange, and electiodialysis of perchlorate salts. [Pg.1223]

Iridium dioxide — Iridium oxide crystallizes in the rutile structure and is the best conductor among the transition metal oxides, exhibiting metallic conductivity at room temperature. This material has established itself as a well-known - pH sensing [i] and electrochromic [ii] material (- electrochromism) as well as a catalytic electrode in the production of chlorine and caustic [iii]. The oxide may be prepared thermally [iv] (e.g., by thermal decomposition of suitable precursors at temperatures between 300 and 500 °C to form a film on a substrate such as titanium) or by anodic electrodeposition [v]. [Pg.209]

Elimination of carbon dioxide from carboxyl, water from alcoholic hydroxyl, carboxylic acid from alkanoate, and hydrogen chloride from chlorine side groups or chain ends are typical thermal decomposition reactions in the temperature range 250-350°C. Hydrogen chloride is an important product of poly(vinyl chloride) because every second carbon atom of the hydrocarbon polymer chain is chlorine substituted. But hydroxyl, alkanoate and free carboxylic acid groups normally occur only at the ends of the macromolecular chains in customary plastics, thus the contribution of their elimination to the volatile pyrolysis products is negligible. [Pg.318]

The structure —CHC1—CH2—CO—CH2 — was found by Kwei [99] in polyvinylchloride after photo-oxidation. Such j3 chloroketones decompose by the Norrish type I mechanism without loss of chlorine atoms. Hydrogen chloride is obtained only when polyvinylchloride is photo-oxidized above 30°C [98]. It seems that zipper dehydrochlorination plays little role in the reaction occurring on exposure to ultraviolet light at temperatures below 150°C in the presence of air [97], and that hydrogen chloride is mainly a product of thermal decomposition rather than photolysis [98], The following mechanism can be proposed which takes into account the experimental results namely, that chain scission and crosslinking occur simultaneously on irradiation at 253.7 nm [100] and that carbon dioxide is evolved, while an absorption band at 1775 cm-1 (ascribed to peracids) is detected in the infrared spectrum [98]. [Pg.380]

CHROMIUM CARBONYL (13007-92-6) CjCrOj Contact with strong oxidizers, heat above 400 F/204°C, or contact with chlorine and fuming nitric acid causes decomposition that may be violent possibly explosive. Sensitive to light undergoes photochemical decomposition. On small fires, use dry chemical powder (such as Purple-K-Powder), foam, or COj extinguishers. Thermal decomposition releases carbon monoxide, carbon dioxide, and carcinogenic chromium(VI) oxide. [Pg.268]


See other pages where Chlorine dioxide thermal decomposition is mentioned: [Pg.67]    [Pg.693]    [Pg.693]    [Pg.45]    [Pg.1020]    [Pg.1573]    [Pg.166]    [Pg.369]    [Pg.163]    [Pg.163]    [Pg.180]    [Pg.182]    [Pg.182]    [Pg.196]    [Pg.199]    [Pg.231]    [Pg.232]    [Pg.233]    [Pg.241]    [Pg.269]    [Pg.291]    [Pg.312]    [Pg.327]    [Pg.362]    [Pg.405]    [Pg.473]    [Pg.481]    [Pg.546]    [Pg.554]    [Pg.586]    [Pg.600]    [Pg.601]    [Pg.642]    [Pg.653]    [Pg.725]    [Pg.748]   
See also in sourсe #XX -- [ Pg.254 , Pg.255 ]




SEARCH



Chlorine dioxide

Thermal decomposition

© 2024 chempedia.info