Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diatomic chlorine

I he previous chapters showed how the laws of conservation of mass and con--1- servation of atomic identity, together with the concept of the mole, determine quantitative mass relationships in chemical reactions. That discussion assumed prior knowledge of the chemical formulas of the reactants and products in each equation. The far more open-ended questions of which compounds are found in nature (or which can be made in the laboratory) and what types of reactions they undergo now arise. Why are some elements and compounds violently reactive and others inert Why are there compounds with chemical formulas H2O and NaCl, but never H3O or NaCli Why are helium and the other noble gases monatomic, but molecules of hydrogen and chlorine diatomic All of these questions can be answered by examining the formation of chemical bonds between atoms. [Pg.54]

It is important to bear in mind that some students may hold the common misconception that a compound is a mixture of its constituent elements when they interpret the idea of particles of sodium and particles of chlorine . The particles here are actually the corresponding ions, so they are different from the particles of the elemental sodium (Na ions plus delocalised electrons in a solid lattice) and of elemental chlorine (diatomic CI2 molecules in the gas state), respectively. (This is discussed in greater depth in Chapters I and 4.) This issue should be made clear to students. [Pg.259]

Chlorine has a boiling point of 238 K and is a greenish-yellow diatomic gas at room temperature. It can be liquefied by cooling or by a pressure of a few atmospheres at room temperature. [Pg.318]

Chlorine free radicals used for the substitutioa reactioa are obtaiaed by either thermal, photochemical, or chemical means. The thermal method requites temperatures of at least 250°C to iaitiate decomposition of the diatomic chlorine molecules iato chlorine radicals. The large reaction exotherm demands close temperature control by cooling or dilution, although adiabatic reactors with an appropriate diluent are commonly used ia iadustrial processes. Thermal chlorination is iaexpeasive and less sensitive to inhibition than the photochemical process. Mercury arc lamps are the usual source of ultraviolet light for photochemical processes furnishing wavelengths from 300—500 nm. [Pg.507]

In these examples tire entropy change does not vaty widely, and the value of the equilibrium constant is mainly determined by the heat of dissociation. It can be concluded, tlrerefore, that niuogen is one of the most stable diatomic molecules, and tlrat chlorine is tire most stable diatomic halogen molecule. [Pg.63]

The halogens are volatile, diatomic elements whose colour increases steadily with increase in atomic number. Fluorine is a pale yellow gas which condenses to a canary yellow liquid, bp — 188.UC (intermediate between N2, bp —195.8°, and O2, bp — 183.0°C). Chlorine is a greenish-yellow gas, bp —34.0°, and bromine a dark-red mobile liquid, bp 59.5° interestingly the colour of both elements diminishes with decrease in temperature and at —195° CI2 is almost colourless and Br2 pale yellow. Iodine is a lustrous, black, crystalline solid, mp 113.6°, which sublimes readily and boils at 185.2°C. [Pg.800]

One volume of hydrogen gas combines with one volume of chlorine gas to produce two volumes of hydrogen chloride gas (all measured at the same temperature and pressure). A variety of other types of evidence suggests that hydrogen is an element and that its molecules are diatomic. [Pg.37]

Table 6-VI lists some properties of the halogens. In the elemental state, the halogens form stable diatomic molecules. This stability is indicated by the fact that it takes extremely high temperatures to disrupt halogen molecules to form the monatomic species. For example, it is known that the chlorine near the surface of the sun, at a temperature near 6000°C, is present as a gas consisting of single chlorine atoms. At more normal temperatures, chlorine atoms react with each other to form molecules ... Table 6-VI lists some properties of the halogens. In the elemental state, the halogens form stable diatomic molecules. This stability is indicated by the fact that it takes extremely high temperatures to disrupt halogen molecules to form the monatomic species. For example, it is known that the chlorine near the surface of the sun, at a temperature near 6000°C, is present as a gas consisting of single chlorine atoms. At more normal temperatures, chlorine atoms react with each other to form molecules ...
Apparently the diatomic molecules of the halogens already have achieved some of the stability characteristic of the inert gas electron arrangement. How is this possible How could one chlorine atom satisfy its need for one more electron (so it can reach the argon stability) by... [Pg.96]

The electronic structure of the chlorine atom (3s-3p ) provides a satisfactory explanation of the elemental form of this substance also. The single half-filled 3p orbital can be used to form one covalent bond, and therefore chlorine exists as a diatomic molecule. Finally, in the argon atom all valence orbitals of low energy are occupied by electrons, and the possibility for chemical bonding between the atoms is lost. [Pg.366]

The halogens include fluorine, chlorine, bromine and iodine and all have been used in CVD reactions. They are reactive elements and exist as diatomic molecules, i.e., F2, CI2, etc. Their relevant properties are listed in Table 3.2. [Pg.74]

The first column of the periodic table, Group 1, contains elements that are soft, shiny solids. These alkali metals include lithium, sodium, potassium, mbidium, and cesium. At the other end of the table, fluorine, chlorine, bromine, iodine, and astatine appear in the next-to-last column. These are the halogens, or Group 17 elements. These four elements exist as diatomic molecules, so their formulas have the form X2 A sample of chlorine appears in Figure EV. Each alkali metal combines with any of the halogens in a 1 1 ratio to form a white crystalline solid. The general formula of these compounds s, AX, where A represents the alkali metal and X represents the halogen A X = N a C 1, LiBr, CsBr, KI, etc.). [Pg.18]

C02-0002. Elemental bromine, chlorine, and iodine exist as diatomic molecules. Chlorine is a gas at room temperature, bromine is a liquid, and iodine is a solid. Draw molecular pictures that show the molecular distributions in samples of chlorine, bromine, and iodine. [Pg.74]

A solid that contains cations and anions in balanced whole-number ratios is called an ionic compound. Sodium chloride, commonly known as table salt, is a simple example. Sodium chloride can form through the vigorous chemical reaction of elemental sodium and elemental chlorine. The appearance and composition of these substances are very different, as Figure 2-24 shows. Sodium is a soft, silver-colored metal that is an array of Na atoms packed closely together. Chlorine is a faintly yellow-green toxic gas made up of diatomic, neutral CI2 molecules. When these two elements react, they form colorless ciystals of NaCl that contain Na and Cl" ions in a 1 1 ratio. [Pg.104]

A chemical compound is a substance that contains a combination of atoms of different elements. Because a compound contains more than one element, there is more than one way to write its formula. For example, hydrogen chloride is a diatomic molecule with one atom each of hydrogen and chlorine. Its chemical formula might be written as HCl or CIH. To avoid possible confusion, chemists have standardized the writing of chemical formulas. [Pg.120]

Note that a pair of hydrogen atoms bonded together is a hydrogen molecule. Seven elements, when uncombined with other elements, form diatomic molecules. These elements are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. They are easy to remember because the last six form a large 7 in the periodic table ... [Pg.59]

The equation states that elementary sodium reacts with elementary chlorine to produce sodium chloride, table salt. (The fact that chlorine is one of the seven elements that occur in diatomic molecules when not combined with other elements is indicated.) The numbers before the Na and NaCI are coefficients, stating how many formula units of these substances are involved. If there is no coefficient in a balanced equation, a coefficient of 1 is implied, and so the absence of a coefficient before the Cl2 implies one Cl2 molecule. The equation thus states that when the two reagents react, they do so in a ratio of two atoms of sodium to one molecule of chlorine, to form two formula units of sodium chloride. In addition, it states that when the two reagents react, they do so in a ratio of 2 mol of sodium to 1 mol of chlorine molecules, to form 2 mol of sodium chloride. The ratios of moles of each reactant and product to every other reactant or product are implied ... [Pg.115]

This reaction is also an oxidation-reduction process whereby the oxygen atom is oxidized from the —2 oxidation state to the zero oxidation state as the chlorine atom is reduced from the +1 to —1 oxidation state. As diatomic oxygen is an effective disinfectant, pool owners should avoid the loss of O2 via the decomposition of the hypochlorite ion. Adding hypochlorite-containing disinfectant in the evening hours reduces the loss of the ion from photochemical decomposition. [Pg.71]

The simple diatomic chlorine that is formed must dissipate its excess energy rapidly by colliding with some other molecule or the walls of the container. Otherwise it simply flies apart again. [Pg.375]

In a diatomic molecule, e.g. chlorine (CI2), the bond dissociation enthalpy and the average bond enthalpy will have the same value. This is because both enthalpy changes refer to the process Cl2(g)--> 2Cl(g). [Pg.67]

Chlorine as a free element is diatomic (Cl2) however, as an ion, it will gain one electron to become isoelectronic with argon. The electronic configuration of the chloride ion is s22s22p63s23p6. The compound thus formed, aluminum chloride, has the formula A1C13. [Pg.118]

The value 70.9 is the molecular weight (mass) of the diatomic chlorine obtained by multiplying the atomic weight of chlorine (from the periodic table) by two. [Pg.40]

Chlorine is being oxidized from -1 in the chloride ion to 0 in diatomic chlorine gas. [Pg.85]

Another RP-HPLC procedure was applied for the study of the distribution and stability of steryl chlorin esters in copepod faecal pellets from diatom grazing. Pigments were sonicated for 15 min with acetone at 0°C and the procedure was repeated until the extract became colourless. The organic phase was evaporated and the fraction containing the free alcohols was separated by TLC (silica stationary and dichloromethane mobile phases) and analysed by gas chromatography. RP-HPLC measurements were performed in an ODS... [Pg.300]

Obviously, there is an isotope effect on the vibrational frequency v . For het-eroatomic molecules (e.g. HC1 and DC1), infrared spectroscopy permits the experimental observation of the molecular frequencies for two isotopomers. What does one learn from the experimental observation of the diatomic molecule frequencies of HC1 and DC1 To the extent that the theoretical consequences of the Born-Oppenheimer Approximation have been correctly developed here, one can deduce the diatomic molecule force constant f from either observation and the force constant will be independent of whether HC1 or DC1 was employed and, for that matter, which isotope of chlorine corresponded to the measurement as long as the masses of the relevant isotopes are known. Thus, from the point of view of isotope effects, the study of vibrational frequencies of isotopic isomers of diatomic molecules is a study involving the confirmation of the Born-Oppenheimer Approximation. [Pg.58]

When the halogens are in a gaseous state, they occur as diatomic molecules (e.g., Cl ). However, only two of the halogens are gases at room temperature fluorine (F ) and chlorine (Cy. Bromine is a liquid and iodine is a solid at room temperatures. Astatine is the only halogen that is radioactive and is not very important as a representative of the halogens. [Pg.245]

As a nonmetal, chlorine exists as a greenish-yellow gas that is corrosive and toxic at room temperatures. As a halogen, chlorine is not found in the elemental (atomic) state but forms diatomic gas molecules (Cl j). As a very active negative ion with the oxidation state of —1, chlorine forms bonds with most metals found in groups I and II. [Pg.249]

Chlorine is the 20th most abundant element on the Earth. It is not found as a free element (atoms) except as a diatomic gas escaping from very hot active volcanoes. It has been known for thousands of years as rock salt (hahte). It is also found in sylvite and carnalhte and as a chloride in seawater. In nature, it is mostly found in dissolved salts in seawater and deposits in salt mines. Its best-known compound is sodium chloride (NaCl), which is common table salt. Chlorine is important for the chemical industry. Numerically, it is the 12th most produced chemical in the United States and ranks ninth in volume of chemicals produced in the United States. [Pg.249]

Kraft mill that had used elemental chlorine historically Microbial community and diatom species in lake sediments sampled from 2-8 cm depths Drop in the ATP content, depressed butyrate-esterase activity indicating toxicity to microorganisms, and reduction in diatom species richness Mika et al., 1999 [31]... [Pg.466]


See other pages where Diatomic chlorine is mentioned: [Pg.167]    [Pg.167]    [Pg.123]    [Pg.793]    [Pg.97]    [Pg.97]    [Pg.352]    [Pg.20]    [Pg.54]    [Pg.202]    [Pg.123]    [Pg.34]    [Pg.162]    [Pg.95]    [Pg.25]    [Pg.210]    [Pg.210]    [Pg.8]    [Pg.7]    [Pg.380]   
See also in sourсe #XX -- [ Pg.258 , Pg.290 , Pg.291 ]

See also in sourсe #XX -- [ Pg.258 , Pg.290 , Pg.291 ]

See also in sourсe #XX -- [ Pg.286 , Pg.295 , Pg.296 , Pg.297 ]




SEARCH



© 2024 chempedia.info