Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chlorides, detection

A similar coloration is given by acid chlorides, acid anhydrides. ind many amides, but these classes of substances are readily detected by other means and cannot be confused with esters. [Pg.355]

Earlier work on the determination of total mercury in river sediments also include that of Iskander et al. [41], Iskander applied flameless atomic absorption to a sulphuric acid nitric acid digest of the sample following reduction with potassium permanganate, potassium persulphate and stannous chloride. A detection limit of one part in 109 is claimed for this somewhat laborious method. [Pg.403]

Dabsyl Chloride (4-dimethyl-aminoazobenzene-4-sulfonyl chloride) Aabs = 420 nm. Derivatives are very stable (days) and can be formed from both primary and secondary amino acids. Detection is by absorption only. Detection limits are in the high picomole range. Reaction time is typically around 10 minutes at 70°C. Completeness of reaction can be adversely affected by the presence of high levels of various salts. Because reaction efficiency is highly matrix dependent and variable for different amino acids, standard amino acid solution should be derivatized under similar conditions/matrix for accurate calibration. Commercial systems available uti-... [Pg.81]

Stainton [31] has described an automated method for the determination of sulphate and chloride in non saline waters. An ion exchange resin is used to convert the sulphates and chlorides to their free acids. Detection is achieved by electrical conductance. The use of silver-saturated cation exchange resin to precipitate chloride permits distinction between chloride and sulphate. High levels of nitrate, orthophosphate and fluoride give positive interference for sulphate bromide and iodide similarly interfere with chloride estimates. [Pg.218]

In a small test tube or centrifuge tube add 50 mg of the amine, 200 mg of benzenesulfonyl chloride, and 1 mL of methanol. Over the hot sand bath or a steam bath heat the mixture to just below the boiling point, cool, and add 2 mL of 6 M sodium hydroxide. Shake the mixture for 5 min and then allow the tube to stand for 10 more min with occasional shaking. If the odor of benzenesulfonyl chloride is detected, warm the mixture to hydrolyze it. Cool the mixture and acidify it by adding 6 M hydrochloric acid, dropwise, and with stirring. If a precipitate is seen at this point the amine is either primary or secondary. If no precipitate is seen, the amine is tertiary. [Pg.374]

In the case of hydrobromic and hydriodic acids and such olefins as isobutylene and tri methyl ethylene, the rate of alcohol formation may become such that it approaches the rate of hydrolysis of the corresponding alkyl halides, thus supporting the theory that halides are the necessary intermediate product.04 The greater activity of the hydrobromic and hydriodic acids compared with hydrochloric acid toward ethylene is shown by the experiments of Swann, Snow and Keyes.00 At 800 pounds per square inch pressure and a temperature of 150° C. no alkyl chlorides were detected when hydrochloric acid of from 5 to 25 per cent concentration was used. On the other hand, considerable yields of alkyl iodides were obtained under the same conditions when hydriodic acid was used, and alkyl bromides formed in the presence of 40 per cent concentration hydrobromic acid. Alcohol yields were very small. When using propene at 600 to 800 pounds per square inch pressure at 135° C. in the presence of 5 per cent hydrochloric acid solutions and solutions of silver nitrate, yields of alcohol several times that obtained from ethylene were found. The yields were still very low, however, even with times of reaction as long as one hour. [Pg.219]

Water containing 3% ammonium chloride + 1% ascorbic acid Detection... [Pg.332]

This localization phenomenon has also been shown to be important in a case of catalysis by premicellar aggregates. In such a case [ ] premicellar aggregates of cetylpyridinium chloride (CPC) were shown to enhance tire rate of tire Fe(III) catalysed oxidation of sulphanilic acid by potassium periodate in tire presence of 1,10-phenantliroline as activator. This chemistry provides a lowering of tire detection limit for Fe(III) by seven orders of magnitude. It must also be appreciated, however, tliat such premicellar aggregates of CPC actually constitute mixed micelles of CPC and 1,10-phenantliroline tliat are smaller tlian conventional CPC micelles. [Pg.2593]

The sulphate ion is detected by addition of barium chloride in the presence of hydrochloric acid a white precipitate of barium sulphate is obtained. The same test can be used to estimate sulphate, the barium sulphate being filtered off, dried and weighed. [Pg.304]

Both these acids are colourless, but the spots of each acid on a filter-paper strip show up in ultraviolet light as intense blue fluorescent zones. They can also be detected, but considerably less sensitively, by spraying with ethanolic ferric chloride solution, which gives with N-methylanthranilic acid a purple-brown coloration. [Pg.53]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

CAUTION. Ethers that have been stored for long periods, particularly in partly-filled bottles, frequently contain small quantities of highly explosive peroxides. The presence of peroxides may be detected either by the per-chromic acid test of qualitative inorganic analysis (addition of an acidified solution of potassium dichromate) or by the liberation of iodine from acidified potassium iodide solution (compare Section 11,47,7). The peroxides are nonvolatile and may accumulate in the flask during the distillation of the ether the residue is explosive and may detonate, when distilled, with sufficient violence to shatter the apparatus and cause serious personal injury. If peroxides are found, they must first be removed by treatment with acidified ferrous sulphate solution (Section 11,47,7) or with sodium sulphite solution or with stannous chloride solution (Section VI, 12). The common extraction solvents diethyl ether and di-tso-propyl ether are particularly prone to the formation of peroxides. [Pg.315]

It may be noted that primary aliphatic amides are readily converted by hydro-xylamlne hydrochloride into hydroxamic acids, which may be detected by the addition of ferric chloride solution ... [Pg.1062]

A persistent idea is that there is a very small number of flavor quaUties or characteristics, called primaries, each detected by a different kind of receptor site in the sensory organ. It is thought that each of these primary sites can be excited independently but that some chemicals can react with more than one site producing the perception of several flavor quaUties simultaneously (12). Sweet, sour, salty, bitter, and umami quaUties are generally accepted as five of the primaries for taste sucrose, hydrochloric acid, sodium chloride, quinine, and glutamate, respectively, are compounds that have these primary tastes. Sucrose is only sweet, quinine is only bitter, etc saccharin, however, is slightly bitter as well as sweet and its Stevens law exponent is 0.8, between that for purely sweet (1.5) and purely bitter (0.6) compounds (34). There is evidence that all compounds with the same primary taste characteristic have the same psychophysical exponent even though they may have different threshold values (24). The flavor of a complex food can be described as a combination of a smaller number of flavor primaries, each with an associated intensity. A flavor may be described as a vector in which the primaries make up the coordinates of the flavor space. [Pg.3]


See other pages where Acid chlorides, detection is mentioned: [Pg.1051]    [Pg.19]    [Pg.82]    [Pg.321]    [Pg.155]    [Pg.18]    [Pg.19]    [Pg.400]    [Pg.74]    [Pg.2092]    [Pg.935]    [Pg.2781]    [Pg.4941]    [Pg.326]    [Pg.176]    [Pg.1024]    [Pg.395]    [Pg.574]    [Pg.76]    [Pg.395]    [Pg.136]    [Pg.24]    [Pg.312]    [Pg.206]    [Pg.95]    [Pg.379]    [Pg.348]    [Pg.178]    [Pg.70]    [Pg.512]    [Pg.437]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Acids detection

Chloride detection

© 2024 chempedia.info