Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride compounds reactions

A similar reaction occurs when an aqueous solution of a diazonium compound is made strongly alkaline and then warmed with an alkaline solution of stannous chloride. This reaction, however, involves the intermediate formation of the... [Pg.202]

Pd(II) salts promote the carbonylation of organomercury compounds. Reaction of phenylmercury chloride and PdCh under CO pressure affords benzophenone (429)[387]. Both esters and ketones are obtained by the carbonylation of furylmercury(Il) chloride in alcohol[388]. Although the yields are not satisfactory, esters are obtained by the carbonylation of aryl- and alkylmercuryfll) chlorides[389,390]. One-pot catalytic carbonylation of thiophene, furan, and pyrrole (430) takes place at the 2-position via mercuration and transmetallation by the use of PdCb, Hg(N03), and CuCl2[391]. [Pg.83]

Friedel-Crafts acylation of aromatic compounds (Section 12 7) Acyl chlorides and carboxylic acid anhydrides acylate aromatic rings in the presence of alumi num chloride The reaction is electrophil ic aromatic substitution in which acylium ions are generated and attack the ring... [Pg.710]

This reaction gives fair-to-good yields of monoorganotin tribromides and trichlorides when quaternary ammonium or phosphonium catalysts are used (149). Better yields are obtained with organic bromides and staimous bromide than with the chlorides. This reaction is also catalyzed by tri alkyl antimony compounds at 100—160°C, bromides are more reactive than chlorides in this preparation (150,151). a,C0-Dihaloalkanes also react in good yield giving CO-haloalkyltin trihaHdes when catalyzed by organoantimony compounds (152). [Pg.74]

Condensation of vinyl chloride with formaldehyde and HCl (Prins reaction) yields 3,3-dichloro-l-propanol [83682-72-8] and 2,3-dichloro-l-propanol [616-23-9]. The 1,1-addition of chloroform [67-66-3] as well as the addition of other polyhalogen compounds to vinyl chloride are cataly2ed by transition-metal complexes (58). In the presence of iron pentacarbonyl [13463-40-6] both bromoform [75-25-2] CHBr, and iodoform [75-47-8] CHl, add to vinyl chloride (59,60). Other useful products of vinyl chloride addition reactions include 2,2-di luoro-4-chloro-l,3-dioxolane [162970-83-4] (61), 2-chloro-l-propanol [78-89-7] (62), 2-chloropropionaldehyde [683-50-1] (63), 4-nitrophenyl-p,p-dichloroethyl ketone [31689-13-1] (64), and p,p-dichloroethyl phenyl sulfone [3123-10-2] (65). [Pg.415]

Cyanide compounds are classified as either simple or complex. It is usually necessary to decompose complex cyanides by an acid reflux. The cyanide is then distilled into sodium hydroxide to remove compounds that would interfere in analysis. Extreme care should be taken during the distillation as toxic hydrogen cyanide is generated. The cyanide in the alkaline distillate can then be measured potentiometricaHy with an ion-selective electrode. Alternatively, the cyanide can be determined colorimetricaHy. It is converted to cyanogen chloride by reaction with chloramine-T at pH <8. The CNCl then reacts with a pyridine barbituric acid reagent to form a red-blue dye. [Pg.232]

The most important class of stabilisers are the lead compounds which form lead chloride on reaction with hydrogen chloride evolved during decomposition. As a class the lead compounds give rise to products of varying opacity, are toxic and turn black in the presence of certain sulphur-containing compounds but are good heat stabilisers. [Pg.327]

Some of the cuprous chloride compounds of the diazonium salts have been isolated and analysed, and coirespond to the formula CoH.-.NjCl.CuoCIo (Hantzsch). The formation of a crystalline copper compound is rendeied very evident in the present preparation.. A modification of Sandmeyer s reaction IS the introduction of precipitated metallic copper in place of the cuprous salt (Gattermann). [Pg.284]

Inclusion of a para acetyl group requires a somewhat different approach to the preparation of these compounds. Reaction of the diazonium salt from p-aminoacetophenone with sulfur dioxide affords the sulfonyl chloride, 203 this is then converted to the sulfonamide, 204, Elaboration via the carbamate with cyclohexyl-amine affords acetohexamide (205). ... [Pg.138]

An alternate route to ampicillin not only circumvents the need for 6-APA but also has the advantage of providing a prodrug form of ampicillin as well as the parent compound. Reaction of benzylpenicillin (4) with the acid protecting group, 29, gives the formol ester, 30. Reaction of the product with phosphorus pentachloride leads to the corresponding imino chloride (31). [Pg.413]

Replacement of a benzene ring by its isostere, thiophene, is one of the more venerable practices in medicinal chemistry. Application of this stratagem to the NSAID piroxicam, gives tenoxicam, 136, a drug with substantially the same activity, nie synthesis of this compound starts by a multi-step conversion of hydroxy thiophene carboxylic ester 130, to the sulfonyl chloride 133. Reaction of that with N-methylglycinc ethyl ester, gives the sulfonamide 134. Base-catalyzed Claisen type condensation serves to cyclize that intermediate to the p-keto ester 135 (shown as the enol tautomer). The final product tenoxicam (136) is obtained by heating the ester with 2-aminopyridine [22]. [Pg.173]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

The most important group of derivatives for the amino function (Fig. 7-4) is the carbamate group, which can be formed by reactions with acids, acid chlorides or acid anhydrides. A series of chlorides as 2-chloroisovalerylchloride [1], chrysanthe-moylchloride [2] and especially chloride compounds of terpene derivatives (cam-phanic acid chloride [3], camphor-10-sulfonyl chloride [4]) are used. The a-methoxy-a-trifluoromethylphenylacetic acid or the corresponding acid chloride introduced by Mosher in the 1970s are very useful reagents for the derivatization of amines and alcohols [5]. [Pg.188]

Nucleophilic chlorination in the 3-position was observed when the 5,8-dibromo derivative of 200 was heated strongly with phosphorus penta-chloride, a reaction also common to the [3,4-rf] compounds (72MI1). [Pg.335]

Yamase and Goto406 determined first- and second-order rate coefficients for the aluminium chloride-catalysed reaction of halide derivatives of benzoic acid (lO5 = F, 1.73 Cl, 4.49 Br, 4.35 I, 0.81) and phenylacetic acid (105fc2 = F, 12 Cl, 21 Br, 9 I, 6) with benzene. The maxima in the rates for the acid chloride are best accommodated by the assumption that a highly (but not completely) polarised complex takes part in the transition state. Polarisation of such a complex would be aided by electron supply, and consistently, the acetyl halides are about a hundred times as reactive as the benzoyl compounds (see p. 180, also Tables 105 and 108). [Pg.173]

NMR studies on graphite-phosphoric acid showed simultaneous, motional narrowing of both H and resonances above 225 K, indicating high mobility of phosphoric acid in the compound (FS). Chloro-sulfonic acid is inserted alone into graphite in the presence of many inorganic chlorides. The reaction temperature and stage seem to be related to the redox potential of the M"+-M couple (M3). [Pg.290]

Sulfinic acids can be prepared by reduction of sulfonyl chlorides. Though mostly done on aromatic sulfonyl chlorides, the reaction has also been applied to alkyl compounds. Besides zinc, sodium sulfite, hydrazine, sodium sulfide, and other reducing agents have been used. For reduction of sulfonyl chlorides to thiols, see 19-57. [Pg.577]

Carbene complexes have also been prepared by transmetallation reactions. Lithiated azoles react with gold chloride compounds and after protonation or alkylation the corresponding dihydro-azol-ylidene compounds, e.g., (381) or (382), are obtained.22 9-2264 Silver salts of benz-imidazol have also been used to obtain carbene derivatives.2265 Mononuclear gold(I) carbene complexes also form when trimeric gold(I) imidazolyl reacts with ethyl chlorocarbonate or ethyl idodate.2266,2267 The treatment of gold halide complexes with 2-lithiated pyridine followed by protonation or alkylation also yields carbene complexes such as (383).2268 Some of these carbene complexes show luminescent properties.2269-2271... [Pg.1032]

B. Reduction of Dinitrodurene.—A solution of 90 g. of dini-trodurene in 1 1. of glacial acetic acid is boiled in a 12-I. flask (Note 6) 700 g. of stannous chloride is dissolved in 800 cc. of concentrated hydrochloric acid and heated to boiling. The heat is removed from the acetic acid solution of the nitro compound, and the stannous chloride solution is poured very carefully (during about ten minutes) into the dinitrodurene solution. The reaction is complete in fifteen minutes, and as the solution cools the stannic chloride compound of the diamine begins to crystallize. The reaction mixture is cooled to io° in an ice-water bath, and the solid is filtered off by suction, washed twice with 50 cc. of 95 per cent ethyl alcohol and twice with 50 cc. of ether, and dried. The filtrates from the tin compound contain very little of the reduction product and may be discarded. The composition of this compound is [G (CH i)4(NH2-HCI)2l2-SnCl4, and it crystallizes from the reaction mixture in fine, glistening plates which are almost colorless. The yield is 145 g. (97 per cent of the theoretical amount). [Pg.84]


See other pages where Chloride compounds reactions is mentioned: [Pg.176]    [Pg.401]    [Pg.445]    [Pg.85]    [Pg.481]    [Pg.352]    [Pg.226]    [Pg.167]    [Pg.179]    [Pg.9]    [Pg.718]    [Pg.170]    [Pg.424]    [Pg.76]    [Pg.83]    [Pg.115]    [Pg.571]    [Pg.282]    [Pg.172]    [Pg.133]    [Pg.340]    [Pg.62]   


SEARCH



Acyl chlorides aromatic compound reactions with

Chloride compounds

Copper chloride, reaction with organomagnesium compound

Sulfonyl chlorides reaction with aromatic compounds

Thionyl chloride reaction with aromatic compounds

© 2024 chempedia.info