Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral modified catalytically active

ABSTRACT Zeolite Y modified with chiral sulfoxides has been foimd catal rtically to dehydrate racemic butan-2-ol enantioselectively depending on the chiral modifier used. Zeolite Y modified with R-l,3-dithiane-1-oxide shows a higher selectivity towards conversion of S-butan-2-ol and the zeolite modified with S-2-phenyl-3-dithiane-1-oxide reacts preferentially with R-butan-2-ol. Zeolite Y modified with dithiane oxide demonstrates a significantly higher catalsdic activity when compared to the unmodified zeolite. Computational simulations are described and a model for the catalytic site is discussed. [Pg.211]

Surface faceting may be particularly significant in chiral heterogeneous catalysis, particularly in the N i/P-ketoester system. The adsorption of tartaric add and glutamic acid onto Ni is known to be corrosive and it is also established that modifiers are leached into solution during both the modification and the catalytic reaction [28]. The preferential formation of chiral step-kink arrangements by corrosive adsorption could lead to catalytically active and enantioselective sites at step-kinks with no requirement for the chiral modifier to be present on the surface. [Pg.18]

Instead of the absorption of chiral modifiers on metal surfaces, a new method using a slightly different approach attaches chiral moieties directly to metal surfaces through chemical bonds. Chiral silyl ethers have been attached to Pd surface atoms these new catalysts have the form (Pd)s=Si-0-R(,< orS) 42 Their synthesis arose from studies of the effects of siliconation on the catalytic activities and selectivities of dispersed, supported Pd and Pt.43-47 The results from... [Pg.110]

The modification of platinum-group metals by adsorbed chiral organic modifiers has emerged as an efficient method to make catalytic metal surfaces chiral. The method is used to prepare highly efficient catalysts for enantioselective hydrogenation of reactants with activated C = O and C = C groups. The adsorption mode of the chiral modifier is crucial for proper chiral modification of the active metal surfaces. The most efficient chiral modifiers known today are cinchona alkaloids, particularly CD, which yields more than 90% enantiomeric excess in the hydrogenation of various reactants. [Pg.271]

Chiral (salen)Mn(III)Cl complexes are useful catalysts for the asymmetric epoxidation of isolated bonds. Jacobsen et al. used these catalysts for the asymmetric oxidation of aryl alkyl sulfides with unbuffered 30% hydrogen peroxide in acetonitrile [74]. The catalytic activity of these complexes was high (2-3 mol %), but the maximum enantioselectivity achieved was rather modest (68% ee for methyl o-bromophenyl sulfoxide). The chiral salen ligands used for the catalysts were based on 23 (Scheme 6C.9) bearing substituents at the ortho and meta positions of the phenol moiety. Because the structures of these ligands can easily be modified, substantia] improvements may well be made by changing the steric and electronic properties of the substituents. Katsuki et al. reported that cationic chiral (salen)Mn(III) complexes 24 and 25 were excellent catalysts (1 mol %) for the oxidation of sulfides with iodosylbenzene, which achieved excellent enantioselectivity [75,76]. The best result in this catalyst system was given by complex 24 in the formation of orthonitrophenyl methyl sulfoxide that was isolated in 94% yield and 94% ee [76]. [Pg.341]

Recently, Corey and coworkers prepared the cinchonidine-derived bifluoride 20 from the corresponding bromide by passage of a methanolic solution through a column of Amberlyst A-26 OH- form, and subsequent neutralization with 2 equiv. of 1 N HF solution and evaporation (the modified method C in Scheme 9.5). The catalytic activity and chiral efficiency of 20 (dried over P205 under vacuum) have been demonstrated by the development of a Mukaiyama-type aldol reaction of ketene silyl acetal 21 with aldehydes under mild conditions, giving mostly syw-P-hydroxy-a-amino esters 22 as the major diastereomer with good to excellent enantiomeric excesses (Table 9.4) [23],... [Pg.198]

Chiral catalysis is in its infancy. The results described in this review represent only crude pylons marking the entrance to what will probably prove to be an extraordinarily productive and useful arena for future research. There are a great many catalytically active achiral systems which can, in principle, be modified by the incorporation of chiral ligands to produce catalysts for asymmetric hydrogenation and other chiral reactions. Only a few chiral ligands have been synthesized there are almost limitless possibilities in this area for the synthetic chemist. [Pg.121]

An Addenda Stereospecificity of Phospholipase A2. Attack on Phosphoglycerides Chiral at Phosphorus. Only within the past 15 years has any attention been paid to the influence of the phosphorus atom in the catalytic capability of phospholipase A2 on a typical phosphoglyceride such as phosphatidylcholine. However, our current understanding of the influence of the phosphorus configuration on phospholipase A2 activity has derived largely from observations made in the laboratory of Tsai and colleagues, who used chirally modified substrates. In this brief description of these exciting advances, the phosphothioate derivatives will be considered. [Pg.85]

In an attempt to develop a PEG-supported version of a chiral phase-transfer catalyst the Cinchona alkaloid-derived ammonium salt 15 used by Corey and Lygo in the stereoselective alkylation of amino acid precursors was immobilized on a modified PEG similar to that used in the case of 13. The behaviour of the catalyst obtained 16, however, fell short of the expectations (Danelli et al. 2003). Indeed, while this catalyst (10 mol%) showed good catalytic activity promoting the benzy-lation of the benzophenone imine derived from tert-butyl glycinate in 92% yield (solid CsOH, DCM, -78 to 23 °C, 22 h), the observed ee was only 30%. Even if this was increased to 64% by maintaining the reac-... [Pg.310]


See other pages where Chiral modified catalytically active is mentioned: [Pg.267]    [Pg.267]    [Pg.112]    [Pg.130]    [Pg.313]    [Pg.349]    [Pg.549]    [Pg.13]    [Pg.12]    [Pg.136]    [Pg.484]    [Pg.57]    [Pg.383]    [Pg.384]    [Pg.218]    [Pg.144]    [Pg.188]    [Pg.1088]    [Pg.1088]    [Pg.289]    [Pg.11]    [Pg.187]    [Pg.120]    [Pg.651]    [Pg.297]    [Pg.161]    [Pg.558]    [Pg.147]    [Pg.12]    [Pg.134]    [Pg.94]    [Pg.345]    [Pg.5]    [Pg.125]    [Pg.25]    [Pg.141]    [Pg.234]    [Pg.100]    [Pg.549]    [Pg.1509]    [Pg.1788]   


SEARCH



Activity modifier

Chiral activator

Chiral activity

Chiral modifiers

Chirality modifiers

© 2024 chempedia.info