Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral amine catalysts Mannich reactions

Highly enantioselective organocatalytic Mannich reactions of aldehydes and ketones have been extensively stndied with chiral secondary amine catalysts. These secondary amines employ chiral prolines, pyrrolidines, and imidazoles to generate a highly active enamine or imininm intermediate species [44], Cinchona alkaloids were previonsly shown to be active catalysts in malonate additions. The conjngate addition of malonates and other 1,3-dicarbonyls to imines, however, is relatively nnexplored. Snbseqnently, Schans et al. [45] employed the nse of Cinchona alkaloids in the conjngate addition of P-ketoesters to iV-acyl aldimines. Highly enantioselective mnltifnnctional secondary amine prodncts were obtained with 10 mol% cinchonine (Scheme 5). [Pg.152]

Another more efficient catalytic version of the reaction consists of the interaction of ketones with chiral amines [6] to form enolate-like intermediates that are able to react with electrophilic imines. It has been postulated that this reaction takes place via the catalytic cycle depicted in Scheme 33. The chiral amine (130) attacks the sp-hybridized carbon atom of ketene (2) to yield intermediate (131). The Mannich-like reaction between (131) and the imine (2) yields the intermediate (132), whose intramolecular addition-elimination reaction yields the (5-lactam (1) and regenerates the catalyst (130). In spite of the practical interest in this reaction, little work on its mechanism has been reported [104, 105]. Thus, Lectka et al. have performed several MM and B3LYP/6-31G calculations on structures such as (131a-c) in order to ascertain the nature of the intermediates and the origins of the stereocontrol (Scheme 33). According to their results, conformations like those depicted in Scheme 33 for intermediates (131) account for the chiral induction observed in the final cycloadducts. [Pg.338]

Nevertheless, the use of chirally modified Lewis acids as catalysts for enantioselective aminoalkylation reactions proved to be an extraordinary fertile research area [3b-d, 16]. Meanwhile, numerous publications demonstrate their exceptional potential for the activation and chiral modification of Mannich reagents (generally imino compounds). In this way, not only HCN or its synthetic equivalents but also various other nucleophiles could be ami-noalkylated asymmetrically (e.g., trimethylsilyl enol ethers derived from esters or ketones, alkenes, allyltributylstannane, allyltrimethylsilanes, and ketones). This way efficient routes for the enantioselective synthesis of a variety of valuable synthetic building blocks were created (e.g., a-amino nitriles, a- or //-amino acid derivatives, homoallylic amines or //-amino ketones) [3b-d]. [Pg.136]

For example, N-(2-hydroxyphenyl)imines 9 (R = alkyl, aryl) together with chiral zirconium catalysts generated in situ from binaphthol derived ligands were used for the asymmetric synthesis of a-amino nitriles [17], the diastereo- and/or enantioselective synthesis of homoallylic amines [18], the enantioselective synthesis of simple //-amino acid derivatives [19], the diastereo- and enantioselective preparation of a-hydroxy-//-amino acid derivatives [20] or aminoalkyl butenolides (aminoalkylation of triisopropylsilyloxyfurans, a vinylogous variant of the Mannich reaction) [21]. A good example for the potential of the general approach is the diastereo- and enantioselective synthesis of (2R,3S)-3-phenylisoserine hydrochloride (10)... [Pg.136]

Their previous screening of catalysts for of aldol reactions and Robinson annu-lations suggested the possibility that chiral amines might also be able to catalyze the Mannich reaction [30, 31]. Thus, screening of catalysts for Mannich-type reactions between N-OMP-protected aldimines and acetone revealed that chiral diamine salt 10, L-proline 11, and 5,5-dimethylthiazolidine-4-carboxylic acid (DMTC) 12 are catalysts of Mannich-type reactions affording Mannich adducts in moderate yields with 60-88 % ee. To extend the Mannich-type reactions to aliphatic imines, the DMTC 12-catalyzed reactions are performed as one-pot three-component procedures. The o-anisidine component has to be exchanged with p-anisidine for the one-pot reactions to occur. The DMTC 12-catalyzed one-pot three-component direct asymmetric Mannich reactions provide Mannich adducts in moderate yield with 50-86 % ee. [Pg.366]

Chiral amines (both primary and secondary amines) and amino acids have been used as catalysts for aldol reactions, Mannich-type reactions, and other reactions that proceed through enamine intermediates. An enamine-based catalytic cycle is shown in Scheme 2.1. The catalytic cycle includes formation of an iminium intermediate between a donor carbonyl compound and the amine-containing catalyst, the formation of an enamine intermediate from the iminium, C-C bond forma-... [Pg.19]

Cyclohexanediamine-derived amine thiourea 70, which provided high enantio-selectivities for the Michael addition [77] and aza-Henry reactions [78], showed poor activity in the MBH reaction. This fact is not surprising when one considers that a chiral urea catalyst functions by fundamentally different stereoinduction mechanisms in the MBH reaction, and in the activation of related imine substrates in Mannich or Streclcer reactions [80]. In contrast, the binaph-thylamine thiourea 71 mediated the addition of dihydrocinnamaldehyde 74 to cyclohexenone 75 in high yield (83%) and enantioselectivity (71% ee) (Table 5.6, entry 2) [79]. The more bulky diethyl analogue 72 displayed similar enantioselectivity (73% ee) while affording a lower yield (56%, entry 3). Catalyst 73 showed only low catalytic activity in the MBH reaction (18%, entry 4). [Pg.167]

In 2003 Barbas III et al reported the direct organocatalytic asymmetric Mannich reaction of aliphatic aldehydes with a-imino ethyl glyo grlates and tested several chiral secondary amine catalysts, among which only (S)-pro-line (1), (25,4J )-4-hydrmy-proline (trans-4) and trans-12 gave high catalytic activities and very high stereoselectivities (Scheme 11.9). ... [Pg.269]

Abstract The organocatalytic asymmetric Mannich reaction and the related aza-Morita-Baylis-Hillman have been reviewed. The activities in this field have been snbdivided based on the types of catalysts that have been ntilized, which includes catalysis by enamine-forming chiral amines, chiral Br0nsted bases, chiral Brpnsted acids, and phase-transfer catalysts. [Pg.343]

In the previons section, secondary chiral amines were employed that give rise to enamine formation npon reaction with ketones or aldehydes. Chiral tertiary amines, unable to form enamines, are nevertheless capable of inducing enantioselectivity in case substrates are used that contain sufficiently acidic protons such as aldehydes, ketones or active methylene compounds [33]. The cinchona alkaloids, by far the most versatile source of Brpnsted base catalysts, have played a prominent role in various types of asymmetric organocatalytic reactions [34], which is also true for the Mannich reaction. [Pg.356]

Chiral disulfonimides of the general structure 236 have been used as highly efficient catalysts for reactions such as an asymmetric Mannich reaction of silyl ketene acetals with A/-Boc-amino sulfones (13JA15334) as well as an asymmetric three-component synthesis of homoaUylic amines (13AGE2573). Analogs of pyrrolo[l,2,5]benzothiadiazepine 237a and the... [Pg.557]

In addition, various chiral amine-thioureas have been successfully applied to promote asymmetric Mannich reactions. As an example, Takemoto and Miyabe have employed a chiral bifunctional organocatalyst possessing a thiourea moiety and a tertiary amino group as catalyst of the Mannich reaction between ethyl malonate and A-Boc arylimines, which provided the corresponding products in excellent yields and enantioselectivities (93-98% ee), as shown in Scheme S.lb. The degree of enantioselectivity was shown to be dependent on the reaction temperature, with the best results obtained at low temperature. [Pg.132]

Since the discovery of proline-catalyzed enantioselective aldol reactions, an extensive research program to explore chiral secondary amine catalysts has been pursued. Several polymer-supported chiral amines have been synthesized for aldol, Mannich, and related reactions. Polystyrene is a popular solid phase for use in place of silica gel in the proline-based organocatalysis. In contrast, silica gel displays a slightly acidic character and has a hydrogen-bond donor or acceptor, which may change the catalytic activity and chiral space of the organocatalyst. Flow enantioselective aldol [158-161], Mannich [162], Michael [163], and related reactions... [Pg.185]

Furthermore, Kobayashi et al. also revealed that chiral strontium catalysts could be applied to asymmetric Mannich reaction of a sulfonylimidate, which is an ester surrogate, with a IV-Boc-imine [98,99]. The desired product was obtained in good yield with moderate enantioselectivity in the presence of an additional tertiary amine (Scheme 6). This is the first example of a catalytic asymmetric Mannich-type reaction of sulfonylimidates. [Pg.263]


See other pages where Chiral amine catalysts Mannich reactions is mentioned: [Pg.395]    [Pg.271]    [Pg.404]    [Pg.271]    [Pg.146]    [Pg.359]    [Pg.365]    [Pg.939]    [Pg.220]    [Pg.84]    [Pg.171]    [Pg.516]    [Pg.263]    [Pg.263]    [Pg.402]    [Pg.1383]    [Pg.1821]    [Pg.712]    [Pg.73]    [Pg.712]    [Pg.362]    [Pg.363]    [Pg.370]    [Pg.379]    [Pg.389]    [Pg.390]    [Pg.142]    [Pg.100]    [Pg.313]    [Pg.17]    [Pg.22]    [Pg.146]    [Pg.480]    [Pg.352]    [Pg.378]   
See also in sourсe #XX -- [ Pg.2 , Pg.141 ]

See also in sourсe #XX -- [ Pg.2 , Pg.141 ]




SEARCH



Amination catalyst

Amines Mannich reactions

Amines chirality

Catalysts amine

Chiral aminals

Chiral amines

Chiral catalysts

Chiral catalysts reactions

Mannich catalysts

Reactions chiral

© 2024 chempedia.info