Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemistry chemical composition

Chemistry produces many materials, other than drugs, that have to be optimized in their properties and preparation. Chemoinformatics methods will be used more and more for the elucidation and modeling of the relationships between chemical structure, or chemical composition, and many physical and chemical properties, be they nonlinear optical properties, adhesive power, conversion of light into electrical energy, detergent properties, hair-coloring suitabHty, or whatever. [Pg.625]

The dawn of the nineteenth century saw a drastic shift from the dominance of French chemistry to first English-, and, later, German-influenced chemistry. Lavoisier s dualistic views of chemical composition and his explanation of combustion and acidity were landmarks but hardly made chemistry an exact science. Chemistry remained in the nineteenth century basically qualitative in its nature. Despite the Newtonian dream of quantifying the forces of attraction between chemical substances and compiling a table of chemical affinity, no quantitative generalization emerged. It was Dalton s chemical atomic theory and the laws of chemical combination explained by it that made chemistry an exact science. [Pg.28]

The properties of fillers which induence a given end use are many. The overall value of a filler is a complex function of intrinsic material characteristics, eg, tme density, melting point, crystal habit, and chemical composition and of process-dependent factors, eg, particle-si2e distribution, surface chemistry, purity, and bulk density. Fillers impart performance or economic value to the compositions of which they are part. These values, often called functional properties, vary according to the nature of the appHcation. A quantification of the functional properties per unit cost in many cases provides a vaUd criterion for filler comparison and selection. The following are summaries of key filler properties and values. [Pg.366]

The chemical composition, physical stmcture, and key physical properties of a foam, namely its stabiHty and theology, are all closely interrelated. Since there is a large interfacial area of contact between Hquid and vapor inside a foam, the physical chemistry of Hquid—vapor interfaces and their modification by surface-active molecules plays a primary role underlying these interrelationships. Thus the behavior of individual surface-active molecules in solution and near a vapor interface and their influence on interfacial forces is considered here first. [Pg.426]

R. Pettersen, "The Chemical Composition of Wood," in R. Rowell, ed.. The Chemistry of Solid Wood, American Chemical Society, Washington, D.C., 1984, Chapt. 2. [Pg.334]

This book presents a unified treatment of the chemistry of the elements. At present 112 elements are known, though not all occur in nature of the 92 elements from hydrogen to uranium all except technetium and promethium are found on earth and technetium has been detected in some stars. To these elements a further 20 have been added by artificial nuclear syntheses in the laboratory. Why are there only 90 elements in nature Why do they have their observed abundances and why do their individual isotopes occur with the particular relative abundances observed Indeed, we must also ask to what extent these isotopic abundances commonly vary in nature, thus causing variability in atomic weights and possibly jeopardizing the classical means of determining chemical composition and structure by chemical analysis. [Pg.1]

This success of the atomic theory is not surprising to a historian of science. The atomic theory was first deduced from the laws of chemical composition. In the first decade of the nineteenth century, an English scientist named John Dalton wondered why chemical compounds display such simple weight relations. He proposed that perhaps each element consists of discrete particles and perhaps each compound is composed of molecules that can be formed only by a unique combination of these particles. Suddenly many facts of chemistry became understandable in terms of this proposal. The continued success of the atomic theory in correlating a multitude of new observations accounts for its survival. Today, many other types of evidence can be cited to support the atomic postulate, but the laws of chemical composition still provide the cornerstone for our belief in this theory of the structure of matter. [Pg.236]

The structure theory of inorganic chemistry may be said to have been bom only fifty years ago, when Werner, Nobel Laureate in Chemistry in 1913, found that the chemical composition and properties of complex inorganic substances could be explained by assuming that metal atoms often coordinate about themselves a number of atoms different from their valence, usually four atoms at the comers either of a tetrahedron or of a square coplanar with the central atom, or six atoms at the comers of an octahedron. His ideas about the geometry of inorganic complexes were completely verified twenty years later, through the application of the technique of x-ray diffraction. [Pg.10]

The combined influences of runoff generation mechanisms, runoff flowpaths, and soil properties together control runoff chemistry. In spite of the wide range of interactions that characterize terrestrial environments, a few broad generalities can be offered, as the chemical composition of streamflow typically contains... [Pg.179]

The failure to identify the necessary authigenic silicate phases in sufficient quantities in marine sediments has led oceanographers to consider different approaches. The current models for seawater composition emphasize the dominant role played by the balance between the various inputs and outputs from the ocean. Mass balance calculations have become more important than solubility relationships in explaining oceanic chemistry. The difference between the equilibrium and mass balance points of view is not just a matter of mathematical and chemical formalism. In the equilibrium case, one would expect a very constant composition of the ocean and its sediments over geological time. In the other case, historical variations in the rates of input and removal should be reflected by changes in ocean composition and may be preserved in the sedimentary record. Models that emphasize the role of kinetic and material balance considerations are called kinetic models of seawater. This reasoning was pulled together by Broecker (1971) in a paper called "A kinetic model for the chemical composition of sea water."... [Pg.268]

Garrels, R. M. and Mackenzie, F. T. (1967). Origin of the chemical compositions of some springs and lakes. In "Equilibrium Concepts in Natural Water Systems" (W. Stumm, ed.). Advances in Chemistry Series 67, pp. 222-274. American Chemical Society, Washington. [Pg.275]

We have developed several examples of fruitful areas in this chemistry that demonstrate feasibility. As one might expect, a list of compounds related to the pnictates proposed in Table 14.4 as the trivalent pnictogens and trielides should yield compounds of similar chemical composition. However, we can think of these systems in a slightly different manner. We can imagine a different formula from that in the previous equations ... [Pg.220]

Atmospheric aerosols have a direct impact on earth s radiation balance, fog formation and cloud physics, and visibility degradation as well as human health effect[l]. Both natural and anthropogenic sources contribute to the formation of ambient aerosol, which are composed mostly of sulfates, nitrates and ammoniums in either pure or mixed forms[2]. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. That is, relative humidity(RH) history and chemical composition determine whether atmospheric aerosols are liquid or solid. Aerosol physical state affects climate and environmental phenomena such as radiative transfer, visibility, and heterogeneous chemistry. Here we present a mathematical model that considers the relative humidity history and chemical composition dependence of deliquescence and efflorescence for describing the dynamic and transport behavior of ambient aerosols[3]. [Pg.681]

We are asked to identify the redox chemistry occurring in this battery. The problem provides a description of the chemical composition of a galvanic cell. To determine what redox reactions take place, examine the species present at each electrode. Then use the standard procedure to balance the... [Pg.1376]

What we mean by this is that the chemical properties of the solid are not deternfined solely by its structure but also by the nature of its chemical composition and in particular by any defects that may be present. We will find that both physical and chemical properties of a solid are largely determined by the type and nature of defects present. It is axiomatic in inorganic chemistry that ... [Pg.71]

Cortie, M., Xu, X. and Ford, M. (2006) Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods. Physical Chemistry Chemical Physics, 8, 3520-3527. [Pg.348]

The summary of the bulk chemical compositions (major elements, minor elements, rare earth elements), Sr/ Sr (Farrell et al., 1978 Farrell and Holland, 1983), microscopic observation, and chemistry of spinel of unaltered basalt clarifies the tectonic setting of Kuroko deposits. Based on the geochemical data on the selected basalt samples which suffered very weak alteration, it can be pointed out that the basalt that erupted almost contemporaneously with the Kuroko mineralization was BABB (back-arc basin basalt) with geochemical features of which are intermediate between Island arc tholeiite and N-type MORE. This clearly supports the theory that Kuroko deposits formed at back-arc basin at middle Miocene age. [Pg.19]

Assuming chemical equilibrium between Kuroko-forming minerals and Kuroko ore fluids, the chemical composition of Kuroko ore fluids can be estimated, using thermochemical data. Calculations for the purposes of estimating the chemistry of Kuroko... [Pg.48]

The above argument on the calculation of chemical composition of ore fluids, seawater-rock interaction experiments, and isotopic compositions of ore fluids clearly demonstrates that Kuroko ore fluids were generated by seawater-rock interaction at elevated temperatures. The chemistry of present-day hydrothermal solution venting from back-arc basins and midoceanic ridges (sections 2.3 and 2.4) also support this view. [Pg.80]

The chemistry of hydrothermal solutions from midoceanic ridges has been reasonably explained by the effect of buffering by alteration minerals (Seyfried, 1987 Bemdt et al., 1989). Therefore, it might be worth explaining the chemical composition of hydrothermal solutions from back-arc basins in terms of chemical equilibrium between hydrothermal solutions and alteration minerals. [Pg.342]


See other pages where Chemistry chemical composition is mentioned: [Pg.258]    [Pg.204]    [Pg.258]    [Pg.204]    [Pg.2725]    [Pg.367]    [Pg.27]    [Pg.298]    [Pg.199]    [Pg.293]    [Pg.384]    [Pg.238]    [Pg.410]    [Pg.1]    [Pg.352]    [Pg.536]    [Pg.551]    [Pg.582]    [Pg.1215]    [Pg.26]    [Pg.232]    [Pg.238]    [Pg.78]    [Pg.380]    [Pg.155]    [Pg.27]    [Pg.192]    [Pg.373]    [Pg.283]    [Pg.120]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Chemical composition bulk chemistry

Chemistry /chemical

© 2024 chempedia.info