Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemistry alkynes

Hydration of alkynes, Markovnikov reg 10-chemistry, alkyne should be terminal or symmetrical... [Pg.1039]

The most distinctive aspect of the chemistry of acetylene and terminal alkynes is their acidity As a class compounds of the type RC=CH are the most acidic of all hydro carbons The structural reasons for this property as well as the ways m which it is used to advantage m chemical synthesis are important elements of this chapter... [Pg.363]

General Reaction Chemistry of Sulfonic Acids. Sulfonic acids may be used to produce sulfonic acid esters, which are derived from epoxides, olefins, alkynes, aHenes, and ketenes, as shown in Figure 1 (10). Sulfonic acids may be converted to sulfonamides via reaction with an amine in the presence of phosphoms oxychloride [10025-87-3] POCl (H)- Because sulfonic acids are generally not converted directiy to sulfonamides, the reaction most likely involves a sulfonyl chloride intermediate. Phosphoms pentachlotide [10026-13-8] and phosphoms pentabromide [7789-69-7] can be used to convert sulfonic acids to the corresponding sulfonyl haUdes (12,13). The conversion may also be accompHshed by continuous electrolysis of thiols or disulfides in the presence of aqueous HCl [7647-01-0] (14) or by direct sulfonation with chlorosulfuric acid. Sulfonyl fluorides are typically prepared by direct sulfonation with fluorosulfutic acid [7789-21-17, or by reaction of the sulfonic acid or sulfonate with fluorosulfutic acid. Halogenation of sulfonic acids, which avoids production of a sulfonyl haUde, can be achieved under oxidative halogenation conditions (15). [Pg.95]

Tertiary bismuthines appear to have a number of uses in synthetic organic chemistry (32), eg, they promote the formation of 1,1,2-trisubstituted cyclopropanes by the iateraction of electron-deficient olefins and dialkyl dibromomalonates (100). They have also been employed for the preparation of thin films (qv) of superconducting bismuth strontium calcium copper oxide (101), as cocatalysts for the polymerization of alkynes (102), as inhibitors of the flammabihty of epoxy resins (103), and for a number of other industrial purposes. [Pg.131]

The exploration of the chemistry of azirines has led to the discovery of several pyrrole syntheses. From a mechanistic viewpoint the simplest is based upon their ability to behave as a-amino ketone equivalents in reactions analogous to the Knorr pyrrole synthesis cf. Section 3.03.3.2.2), as illustrated in Schemes 91a and 91b for reactions with carbanions. Parallel reactions with enamines or a-keto phosphorus ylides can be effected with electron-deficient 2//-azirines (Scheme 91c). Conversely, electron-rich azirines react with electron deficient alkynes (Scheme 91d). [Pg.139]

Cycloaddition reactions also have important applications for acyclic chalcogen-nitrogen species. Extensive studies have been carried out on the cycloaddition chemistry of [NSa]" which, unlike [NOa]", undergoes quantitative, cycloaddition reactions with unsaturated molecules such as alkenes, alkynes and nitriles (Section 5.3.2). ° The frontier orbital interactions involved in the cycloaddition of [NSa]" and alkynes are illustrated in Fig. 4.13. The HOMO ( Tn) and LUMO ( r ) of the sulfur-nitrogen species are of the correct symmetry to interact with the LUMO (tt ) and HOMO (tt) of a typical alkyne, respectively. Although both... [Pg.70]

Cyclotrithiazyl chloride is also a useful reagent in organic chemistry in the fusion of 1,2,5-thiadiazoles to quinones as well as the synthesis of (a) isothiazoles from 2,5-disubstituted furans and (b) bis-1,2,5-thiadiazoles from A-alkylpyrroles (Scheme 8.4). Alkenes and alkynes react readily with (NSC1)3 to give 1,2,5-thiadiazoles, while 1,4-diphenyl-1,3-butadiene gives a variety of heterocyclic products including a bis(l, 2,5-thiadiazole). ... [Pg.151]

Iminoboranes, R-N=B-R, are isoelectronic with alkynes and contain 2-coordinate boron their chemistry has recently been review-... [Pg.210]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

The total synthesis of ( )-estrone [( )-1 ] by Vollhardt et al. is a novel extension of transition metal mediated alkyne cyclotrimeriza-tion technology. This remarkable total synthesis is achieved in only five steps from 2-methylcyclopentenone (19) in an overall yield of 22%. The most striking maneuver in this synthesis is, of course, the construction of tetracycle 13 from the comparatively simple diyne 16 by combining cobalt-mediated and ort/io-quinodimethane cycloaddition reactions. This achievement bodes well for future applications of this chemistry to the total synthesis of other natural products. [Pg.165]

Although beyond the scope of the present discussion, another key realization that has shaped the definition of click chemistry in recent years was that while olefins, through their selective oxidative functionalization, provide convenient access to reactive modules, the assembly of these energetic blocks into the final structures is best achieved through cydoaddition reactions involving carbon-het-eroatom bond formation, such as [l,3]-dipolar cydoadditions and hetero-Diels-Al-der reactions. The copper(i)-catalyzed cydoaddition of azides and terminal alkynes [5] is arguably the most powerful and reliable way to date to stitch a broad variety... [Pg.445]

In the same way as arylcarbene complexes, alkenylcarbene complexes typically react with alkynes to provide [3C+2S+1C0] Dotz cycloadducts (see Chap. ccChromium-Templated Benzannulation Reactions , p. 123 in this book). However, some isolated examples involving the formation of five-membered rings through [3C+2S] cycloaddition processes have been reported [71]. In this context, de Meijere et al. found that /J-donor-substituted alkenylcarbene complexes react with alkynes to give cyclopentene derivatives [71a]. This topic is also discussed in detail in Chap.ccThe Multifaceted Chemistry of Variously Substituted a,/J-Unsaturated Fischer Metalcarbenes , p. 21 of this book. [Pg.78]

A microwave-assisted three-component reaction has been used to prepare a series of 1,4-disubstituted-1,2,3-triazoles with complete control of regiose-lectivity by click chemistry , a fast and efficient approach to novel functionalized compounds using near perfect reactions [76]. In this user-friendly procedure for the copper(l) catalyzed 1,3-dipolar cycloaddition of azides and alkynes, irradiation of an alkyl halide, sodium azide, an alkyne and the Cu(l) catalyst, produced by the comproportionation of Cu(0) and Cu(ll), at 125 °C for 10-15 min, or at 75 °C for certain substrates, generated the organic azide in situ and gave the 1,4-disubstituted regioisomer 43 in 81-93% yield, with no contamination by the 1,5-regioisomer (Scheme 18). [Pg.45]

The tin hydrides find important applications as reducing agents. Many of their reactions (particularly the reduction of alkyl halides and the hydrostannation of simple alkenes and alkynes) arc known to proceed through RaSn- intermediates, and this aspect of their chemistry is referred to in Section II,G. [Pg.15]


See other pages where Chemistry alkynes is mentioned: [Pg.20]    [Pg.43]    [Pg.318]    [Pg.307]    [Pg.658]    [Pg.20]    [Pg.43]    [Pg.318]    [Pg.307]    [Pg.658]    [Pg.81]    [Pg.122]    [Pg.486]    [Pg.391]    [Pg.440]    [Pg.477]    [Pg.179]    [Pg.95]    [Pg.66]    [Pg.945]    [Pg.93]    [Pg.781]    [Pg.181]    [Pg.544]    [Pg.259]    [Pg.1318]    [Pg.1336]    [Pg.446]    [Pg.81]    [Pg.116]    [Pg.271]    [Pg.285]    [Pg.167]    [Pg.153]    [Pg.316]   
See also in sourсe #XX -- [ Pg.408 , Pg.409 , Pg.410 ]




SEARCH



Acid-base chemistry alkynes

Alkene and alkyne chemistry

Alkyne click chemistry reaction

Alkyne complexes chemistry

Alkynes metathesis chemistry

Alkynes organometallic chemistry

Chemistry Cu(l)-promoted Azide-Alkyne Cycloaddition

Organic chemistry alkynes

Organometallic chemistry alkene/alkyne reactions

Organotransition metal chemistry, alkyne

Summary of Alkyne Chemistry

© 2024 chempedia.info