Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption, additive effect

Can one further enhance the performance of this classically promoted Rh catalyst by using electrochemical promotion The promoted Rh catalyst, is, after all, already deposited on YSZ and one can directly examine what additional effect may have the application of an external voltage UWR ( 1 V) and the concomitant supply (+1 V) or removal (-1 V) of O2 to or from the promoted Rh surface. The result is shown in Fig. 2.3 with the curves labeled electrochemical promotion of a promoted catalyst . It is clear that positive potentials, i.e. supply of O2 to the catalyst surface, further enhances its performance. The light-off temperature is further decreased and the selectivity is further enhanced. Why This we will see in subsequent chapters when we examine the effect of catalyst potential UWR on the chemisorptive bond strength of various adsorbates, such as NO, N, CO and O. But the fact is that positive potentials (+1V) can further significantly enhance the performance of an already promoted catalyst. So one can electrochemically promote an already classically promoted catalyst. [Pg.19]

Examination of automotive catalysts by various chemisorption techniques has shown that a loss in noble metal surface area caused by higher temperatures correlates monotonically with various activity indices (62, 63). Moreover, Dalla Betta and co-workers (64) were able to separate the additional effect of poisons on the surface of the precious metal by painstaking attention to detail. They developed techniques for accurately measuring the crystallite-size distribution in used automotive catalysts by... [Pg.335]

Some supplementary remarks to the theory of Penn might be appropriate here. There are additional effects which are of relevance if a more quantitative theory of the photoemission process from an adsorbate-covered surface is envisaged. The first point is that the Anderson model as applied to chemisorption is a clearly oversimplified model to describe real metal-adsorbate systems. Besides overlap effects due to the nonorthogonality of the states k) and a), there are several interaction effects which are neglected in the Hamiltonian, Eq.(5). The adsorbed atom, for instance, may act as a scattering centre for the metal electrons and thus modify the Bloch wave functions characteristic of the free substrate. This can be accounted for by adding a term... [Pg.145]

Rosene and Manes studied the effect of pH on the total adsorption from aqueous solutions of sodium benzoate + benzoic acid by activated charcoal. They interpreted their data in terms of the Polanyi potential theory applied to bisolute adsorption (see later p. 117), in which the concentrations of neutral benzoic acid and benzoate anions depend on the pH of the solution (activity coefficient corrections were ignored). They confirmed that, at constant total equilibrium concentration, the adsorption dropped from a relatively high plateau for pH <2 down to a small adsorption at pH >10. The analysis of results is somewhat more complex than with essentially non-electrolyte adsorption, and in this case there were additional effects involving chemisorption of benzoate ion by residual ash in the carbon which had, therefore, to be eliminated. Even with ash-extracted carbon there was evidence of some residual chemisorption. The theoretical analysis correlated satisfactorily with the experimental data on the basis that at pH >10 sodium benzoate is not physically adsorbed and that the effect of pH is completely accounted for by its effect on the concentration of free acid. In addition the theory explains successfully the increase in pH (called by the authors hydrolytic adsorption ) when solutions of sodium benzoate are treated with neutral carbon. However, no account is taken in this paper of the effect of pH on the surface charge of the carbon. [Pg.109]

Some calculated values for the heat of adsorption of diatomic molecules, Qab, are listed in Table 6.6 and compared to experimental values obtained from the literature [16]. The effect of the type of coordination and the bonding end of a molecule can readily be observed. Illustration 6.2 provides some sample calculations resulting in these values for weak chemisorption. Additional examples are given elsewhere [16-18]. [Pg.124]

In addition to actual synthesis tests, fresh and used catalysts were investigated extensively in order to determine the effect of steam on catalyst activity and catalyst stability. This was done by measurement of surface areas. Whereas the Brunauer-Emmett-Teller (BET) area (4) is a measure of the total surface area, the volume of chemisorbed hydrogen is a measure only of the exposed metallic nickel area and therefore should be a truer measure of the catalytically active area. The H2 chemisorption measurement data are summarized in Table III. For fresh reduced catalyst, activity was equivalent to 11.2 ml/g. When this reduced catalyst was treated with a mixture of hydrogen and steam, it lost 27% of its activity. This activity loss is definitely caused by steam since a... [Pg.130]

The effect of alkali additives on N2 chemisorption has important implications for ammonia synthesis on iron, where alkali promoters (in the form of K or K20) are used in order to increase the activity of the iron catalyst. [Pg.50]

As noted before, thin film lubrication (TFL) is a transition lubrication state between the elastohydrodynamic lubrication (EHL) and the boundary lubrication (BL). It is widely accepted that in addition to piezo-viscous effect and solid elastic deformation, EHL is featured with viscous fluid films and it is based upon a continuum mechanism. Boundary lubrication, however, featured with adsorption films, is either due to physisorption or chemisorption, and it is based on surface physical/chemical properties [14]. It will be of great importance to bridge the gap between EHL and BL regarding the work mechanism and study methods, by considering TFL as a specihc lubrication state. In TFL modeling, the microstructure of the fluids and the surface effects are two major factors to be taken into consideration. [Pg.64]

It is well established that sulfur compounds even in low parts per million concentrations in fuel gas are detrimental to MCFCs. The principal sulfur compound that has an adverse effect on cell performance is H2S. A nickel anode at anodic potentials reacts with H2S to form nickel sulfide. Chemisorption on Ni surfaces occurs, which can block active electrochemical sites. The tolerance of MCFCs to sulfur compounds is strongly dependent on temperature, pressure, gas composition, cell components, and system operation (i.e., recycle, venting, and gas cleanup). Nickel anode at anodic potentials reacts with H2S to form nickel sulfide. Moreover, oxidation of H2S in a combustion reaction, when recycling system is used, causes subsequent reaction with carbonate ions in the electrolyte [1]. Some researchers have tried to overcome this problem with additional device such as sulfur removal reactor. If the anode itself has a high tolerance to sulfur, the additional device is not required, hence, cutting the capital cost for MCFC plant. To enhance the anode performance on sulfur tolerance, ceria coating on anode is proposed. The main reason is that ceria can react with H2S [2,3] to protect Ni anode. [Pg.601]

The catalytic activity of ln/H-ZSM-5 for the selective reduction of nitric oxide (NO) with methane was improved by the addition of Pt and Ir which catalyzed NO oxidation, even in the presence of water vapor. It was also found that the precious metal, particularly Ir loaded in/H-ZSM-5 gave a low reaction order with respect to NO, and then showed a high catalytic activity for the reduction of NO at low concentrations, if compared with ln/H-ZSM-5. The latter effect of the precious metal is attributed to the enhancement of the chemisorption of NO and also to the increase in the amount of NO2 adsorbed on in sites. [Pg.671]


See other pages where Chemisorption, additive effect is mentioned: [Pg.540]    [Pg.540]    [Pg.143]    [Pg.155]    [Pg.342]    [Pg.245]    [Pg.431]    [Pg.102]    [Pg.41]    [Pg.356]    [Pg.345]    [Pg.742]    [Pg.115]    [Pg.44]    [Pg.48]    [Pg.67]    [Pg.81]    [Pg.29]    [Pg.215]    [Pg.250]    [Pg.178]    [Pg.195]    [Pg.86]    [Pg.86]    [Pg.140]    [Pg.307]    [Pg.117]    [Pg.196]    [Pg.16]    [Pg.112]    [Pg.163]    [Pg.168]    [Pg.93]    [Pg.143]    [Pg.261]    [Pg.361]    [Pg.362]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Chemisorption effects

© 2024 chempedia.info