Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals/chemical elements

See also Bond (Chemical) Chemical Elements Coordination Number Molecule Oxidation and Oxidizing Agents and Oxidation Number,... [Pg.1665]

Nesmeyanov, A. N. "Vapor Pressure of the Chemical Elements," Elsevier, New York, 1963. [Pg.11]

Because model colloids tend to have a ratlier well defined chemical composition, elemental analysis can be used to obtain detailed infonnation, such as tlie grafted amount of polymer in tire case of sterically stabilized particles. More details about tire chemical stmcture can be obtained using NMR techniques (section B1.13). In addition, NMR... [Pg.2672]

Besides stmctural variety, chemical diversity has also increased. Pure silicon fonns of zeolite ZSM-5 and ZSM-11, designated silicalite-l [19] and silicahte-2 [20], have been synthesised. A number of other pure silicon analogues of zeolites, called porosils, are known [21]. Various chemical elements other than silicon or aluminium have been incoriDorated into zeolite lattice stmctures [22, 23]. Most important among those from an applications point of view are the incoriDoration of titanium, cobalt, and iron for oxidation catalysts, boron for acid strength variation, and gallium for dehydrogenation/aromatization reactions. In some cases it remains questionable, however, whether incoriDoration into the zeolite lattice stmcture has really occurred. [Pg.2782]

Nowadays, chemical elements are represented in abbreviated form [2]. Each element has its ovm symbol, which typically consists of the initial upper-case letter of the scientific name and, in most cases, is followed by an additional characteristic lower-case letter. Together with the chemical symbol, additional information can be included such as the total number of protons and neutrons in the nucleus, the atomic number (the number of protons in the nucleus) thus isotopes can be distinguished, e.g., The charge value and, finally, the number of atoms which are present in the molecule can be given (Figure 2-3). For example, dioxygen is represented by O2. [Pg.19]

The Wiswesser Line Notation (WLN) was introduced in 1946, in order to organize and to systematically describe the cornucopia of compounds in a more concise manner. A line notation represents a chemical structure by an alphanumeric sequence, which significantly simplifies the processing by the computer [9-11], (n many cases the WLN uses the standard symbols for the chemical elements. Additionally, functional groups, ring systems, positions of ring substituents, and posi-... [Pg.23]

For nearly half a century, Mendeleev s periodic table remained an empirical compilation of the relationship of the elements. Only after the first atomic model was developed by the physicists of the early twentieth century, which took form in Bohr s model, was it possible to reconcile the involved general concepts with the specificity of the chemical elements. Bohr indeed expanded Rutherford s model of the atom, which tried to connect the chemical specificity of the elements grouped in Mendeleev s table with the behavior of electrons spinning around the nucleus. Bohr hit upon the idea that Mendeleev s periodicity could... [Pg.31]

The actinide elements are a group of chemically similar elements with atomic numbers 89 through 103 and their names, symbols, atomic numbers, and discoverers are given in Table 1 (1-3) (see Thorium and thorium compounds Uranium and uranium compounds Plutonium and plutonium compounds Nuclear reactors and Radioisotopes). [Pg.212]

Table 1. Chemical Elements Essential to Healthy Growth of Plants ... Table 1. Chemical Elements Essential to Healthy Growth of Plants ...
Occurrence in Nature. About 99.6% of the earth s mass results from 32 of the chemical elements. The remaining 0.4% is apportioned among 64 elements, all of which are present as traces. Iodine is one of these 64. Estimates about abundance of the constituent elements of the Hthosphere place iodine 46th on a restricted Hst of 59 elements (37 very rare elements are excluded) and 61st on a Hst in which 96 elements are included. Iodine is, indeed, one of the scarcest of the nonmetaUic elements in the total composition of the earth (3). [Pg.358]

Oxygen usually exhibits a valence of —2 in combination with other chemical elements to form compounds such as oxides. Most elements combine with oxygen, which is highly electronegative, in more than one ratio because of the variety of valences exhibited by the other element, or because of the existence of compHcated molecular stmctures. An extended discussion of oxides is available in the Hterature (13). [Pg.476]

N. V. Sidgwick, Chemical Elements and Their Compounds, Clarendon Press, Oxford, U.K., 1950. [Pg.69]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

There are four modes of radioactive decay that are common and that are exhibited by the decay of naturally occurring radionucHdes. These four are a-decay, j3 -decay, electron capture and j3 -decay, and isomeric or y-decay. In the first three of these, the atom is changed from one chemical element to another in the fourth, the atom is unchanged. In addition, there are three modes of decay that occur almost exclusively in synthetic radionucHdes. These are spontaneous fission, delayed-proton emission, and delayed-neutron emission. Lasdy, there are two exotic, and very long-Hved, decay modes. These are cluster emission and double P-decay. In all of these processes, the energy, spin and parity, nucleon number, and lepton number are conserved. Methods of measuring the associated radiations are discussed in Reference 2 specific methods for y-rays are discussed in Reference 1. [Pg.448]

There are numerous misconceptions about the sources of various chemical elements in waste, particularly those that are potential acid formers when the waste is incinerated or mechanically converted and used as a refuse-derived fuel. For example, it is often mistakenly stated that the source of chlorine in waste, hence a potential source of HCl emissions, is poly(vinyl chloride). The relative contents of selected, potentially acid-forming elements in the organic portion of a sample of waste collected from various households in one U.S. East Coast city is given in Table 2 (17). In this city, a chief source of chlorine in the waste is NaCl, probably from food waste. [Pg.543]

Silicon, a low density chemical element having nonmetallic chaiacteristics, is the second, after oxygen (50.5%), most abundant element in the lithosphere. Silicon occurs naturally in the form of oxides and silicates and constitutes over 25% of the earth s cmst (see Silica). [Pg.535]

It was not until the eighteenth century that carbon was recognized as a chemical element, and it is quite certain that no early metallurgist was aware of the basis of the unique properties of steel as compared to those of wrought iron. Carbon can be alloyed with iron in a number of ways to make steel, and all methods described herein have been used at various times in many locaUties for perhaps 3000 or more years. [Pg.373]

The physical and mechanical properties of steel depend on its microstmcture, that is, the nature, distribution, and amounts of its metaHographic constituents as distinct from its chemical composition. The amount and distribution of iron and iron carbide determine most of the properties, although most plain carbon steels also contain manganese, siUcon, phosphoms, sulfur, oxygen, and traces of nitrogen, hydrogen, and other chemical elements such as aluminum and copper. These elements may modify, to a certain extent, the main effects of iron and iron carbide, but the influence of iron carbide always predominates. This is tme even of medium alloy steels, which may contain considerable amounts of nickel, chromium, and molybdenum. [Pg.384]


See other pages where Chemicals/chemical elements is mentioned: [Pg.19]    [Pg.19]    [Pg.19]    [Pg.139]    [Pg.162]    [Pg.311]    [Pg.21]    [Pg.26]    [Pg.29]    [Pg.513]    [Pg.227]    [Pg.212]    [Pg.418]    [Pg.420]    [Pg.411]    [Pg.333]    [Pg.114]    [Pg.504]    [Pg.322]    [Pg.379]    [Pg.379]    [Pg.474]    [Pg.387]   
See also in sourсe #XX -- [ Pg.8 , Pg.15 , Pg.16 , Pg.40 , Pg.52 , Pg.99 , Pg.115 , Pg.118 , Pg.175 , Pg.243 , Pg.278 , Pg.289 , Pg.290 ]




SEARCH



Chemical elements

© 2024 chempedia.info