Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical types, theory

The singlet-level theory has also been used to describe the structure of associating fluids near crystalline surfaces [30,31,76,77]. The surface consists explicitly of atoms which are arranged on a lattice of a given symmetry. The fluid atom-surface atom potential can also involve an associative term, i.e., the chemical-type bonding of the adsorbate particles with the surface may be included into the model. However, we restrict ourselves to the case of a nonassociative crystalline surface first. [Pg.182]

Axelrod s discovery provided an answer to the question of why imipramine might alleviate depression, even if it did not inhibit the destruction of neurotransmitters in the brain. With the problem of imipramine solved, the chemical-imbalance theory seemed to work. Two different types of drugs relieve depression, the theory went,... [Pg.86]

Although the therapeutic effectiveness of antidepressants seemed astonishing 40 years ago and still seems indisputable to many people today, it is, in fact, an illusion. As I have shown earlier in this book, the difference between the effects of antidepressants and placebos is clinically insignificant, despite clinical-trial methods that ought to enhance it. But strangely enough, it is not the ineffectiveness of antidepressants that seals the fate of the chemical-imbalance theory. Rather, it is their effectiveness. The problem is that too many different types of antidepressants work too well for the theory to make physiological sense. [Pg.93]

Different types of antidepressants are supposed to affect different neurotransmitters. Some are supposed to affect only serotonin, others are supposed to affect both serotonin and norepinephrine, and still others are supposed to affect norepinephrine and dopamine. But there is a relatively new antidepressant that has a completely different mode of action. It is a most unlikely medication, and the evidence for its effectiveness puts the last nail in the coffin of the chemical-imbalance theory of depression. [Pg.96]

The interaction between experiment and theory is very important in the field of chemical transformations. In 1981 Kenichi Fukui and Roald Hoffmann received a Nobel Prize for their theoretical work on the electronic basis of reaction mechanisms for a number of important reaction types. Theory has also been influential in guiding experimental work toward demonstrating the mechanisms of one of the simplest classes of reactions, electron transfer (movement of an electron from one place to another). Henry Taube received a Nobel prize in 1983 for his studies of electron transfer in inorganic chemistry, and Rudolf Marcus received a Nobel Prize in 1992 for his theoretical work in this area. The state of development of chemical reaction theory is now sufficiently advanced that it can begin to guide the invention of new transformations by synthetic chemists. [Pg.48]

In addition to atomism, the principal chemical theories of the nineteenth century included electrochemical dualism, the radical theory, the type theory, and the structure theory, the latter strongly identified with what chemists called the "law of linking" of carbon atoms. The valence theory evolved as a way of tying together the notions of chemical equivalence and chemical structure, and it carried along the old problem that some chemical elements (e.g., nitrogen) exhibit different combining values with another element in different circumstances. [Pg.129]

So-called solvation/structural forces, or (in water) hydration forces, arise in the gap between a pair of particles or surfaces when solvent (water) molecules become ordered by the proximity of the surfaces. When such ordering occurs, there is a breakdown in the classical continuum theories of the van der Waals and electrostatic double-layer forces, with the consequence that the monotonic forces they conventionally predict are replaced (or accompanied) by exponentially decaying oscillatory forces with a periodicity roughly equal to the size of the confined species (Min et al, 2008). In practice, these confined species may be of widely variable structural and chemical types — ranging in size from small solvent molecules (like water) up to macromolecules and nanoparticles. [Pg.128]

This book outlines the basic principles needed to understand the mechanism of explosions by chemical explosives. The history, theory and chemical types of explosives are introduced, providing the reader with information on the physical parameters of primary and secondary explosives. Thermodynamics, enthalpy, free energy and gas equations are covered together with examples of calculations, leading to the power and temperature of explosions. A very brief introduction to propellants and pyrotechnics is given, more information on these types of explosives should be found from other sources. This second edition introduces the subject of Insensitive Munitions (IM) and the concept of explosive waste recovery. Developments in explosive crystals and formulations have also been updated. This book is aimed primarily at A level students and new graduates who have not previously studied explosive materials, but it should prove useful to others as well. I hope that the more experienced chemist in the explosives industry looking for concise information on the subject will also find this book useful. [Pg.190]

Semiempirical molecular orbital methods23-25 incorporate parameters derived from experimental data into molecular orbital theory to reduce the time-consuming calculation of two-electron integrals and correlation effects. Examples of semiempirical molecular orbital methods include Dewar s AMI, MNDO, and MINDO/3. Of the three quantum chemical types, the semiempirical molecular orbital methods are the least sophisticated and thus require the least amount of computational resources. However, these methods can be reasonably accurate for molecules with standard bond types. [Pg.154]


See other pages where Chemical types, theory is mentioned: [Pg.537]    [Pg.287]    [Pg.83]    [Pg.94]    [Pg.99]    [Pg.368]    [Pg.83]    [Pg.104]    [Pg.260]    [Pg.172]    [Pg.175]    [Pg.197]    [Pg.44]    [Pg.48]    [Pg.227]    [Pg.616]    [Pg.26]    [Pg.210]    [Pg.82]    [Pg.342]    [Pg.138]    [Pg.91]    [Pg.172]    [Pg.247]    [Pg.249]    [Pg.306]    [Pg.140]    [Pg.3]    [Pg.65]    [Pg.567]    [Pg.622]    [Pg.39]    [Pg.575]    [Pg.567]    [Pg.116]    [Pg.437]    [Pg.439]    [Pg.5]    [Pg.1155]    [Pg.472]    [Pg.52]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Types, theory

© 2024 chempedia.info