Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction water

Organic Reactions in Micro-Organized Media—Why and How Water-Promoted Organic Reactions The design of green oxidants Water as a solvent for chemical reactions Water as a benign solvent for chemical syntheses... [Pg.175]

Of course, as stated earlier, matter can change form. Cool liquid water and it becomes solid ice. Heat it and it becomes a gas. None of these changes of state involve chemical reactions. Water, ice, and steam are just different states of the same substance, H20. Now, let us return to the question that opened this chapter and make it more specific. What holds solids and liquids together Why do the molecules not fly apart as they do in gases ... [Pg.88]

We refer to H2 and O2 in Equation (3.1) as reactants, which are the starting materials in a chemical reaction. Water is the product, which is the substance formed as a result of a chemical reaction. A chemical equation, then, is just the chemist s shorthand description of a reaction. In a chemical equation the reactants are conventionally written on the left and the products on the right of the arrow ... [Pg.85]

While silicones, polyurethanes and polysulfides set through a chemical reaction, water based emulsion sealants achieve their functional end state by simple physical drying, i.e. evaporation of the water. The majority of emulsion sealants are composed of acrylic emulsions and to a lesser extent vinylacrylic and other copolymers. [Pg.234]

Sitzmann E V and Eisenthal K B 1988 Picosecond dynamics of a chemical-reaction at the air-water interface studied by surface second-harmonic generation J. Phys. Chem. 92 4579-80... [Pg.1304]

Hydrogen-bonded clusters are an important class of molecular clusters, among which small water clusters have received a considerable amount of attention [148, 149]. Solvated cluster ions have also been produced and studied [150, 151]. These solvated clusters provide ideal model systems to obtain microscopic infonnation about solvation effect and its influence on chemical reactions. [Pg.2400]

Metals in higher oxidation states form halides which are essentially covalent, for example AICI3, SnCl, FeClj when these compounds dissolve in water they do so by a strongly exothermic process. Indeed it is perhaps incorrect to think of this only as a dissolution process, since it is more like a chemical reaction—but to differentiate for a particular substance is not easy, as we shall see. The steps involved in the case of aluminium chloride can be represented as... [Pg.80]

Ozone is formed in certain chemical reactions, including the action of fluorine on water (p. 323) and the thermal decomposition ofiodic(VII) (periodic) acid. It is also formed when dilute (about 1 M) sulphuric acid is electrolysed at high current density at low temperatures the oxygen evolved at the anode can contain as much as 30% ozone. [Pg.263]

In special cases (as in colloidal solutions) some particles can be considered as essential and other particles as irrelevant , but in most cases the essential space will itself consist of collective degrees of freedom. A reaction coordinate for a chemical reaction is an example where not a particle, but some function of the distance between atoms is considered. In a simulation of the permeability of a lipid bilayer membrane for water [132] the reaction coordinate was taken as the distance, in the direction perpendicular to the bilayer, between the center of mass of a water molecule and the center of mass of the rest of the system. In proteins (see below) a few collective degrees of freedom involving all atoms of the molecule, describe almost all the... [Pg.20]

Apart from using an environmentally friendly solvent, it is also important to clean up the chemical reactions themselves by reducing the number and amount of side-products formed. For this purpose catalysts are a versatile tool. Catalysts have been used for thousands of years in processes such as fermentation and their importance has grown ever since. In synthetic oiganic chemistry, catalysts have found wide applications. In the majority of these catalytic processes, organic solvents are used, but also here the use of water is becoming increasingly popular . [Pg.2]

A single-channel manifold also can be used for systems in which a chemical reaction generates the species responsible for the analytical signal. In this case the carrier stream both transports the sample to the detector and reacts with the sample. Because the sample must mix with the carrier stream, flow rates are lower than when no chemical reaction is involved. One example is the determination of chloride in water, which is based on the following sequence of reactions. ... [Pg.652]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Detergents may be produced by the chemical reaction of fats and fatty acids with polar materials such as sulfuric or phosphoric acid or ethylene oxide. Detergents emulsify oil and grease because of their abiUty to reduce the surface tension and contact angle of water as well as the interfacial tension between water and oil. Recent trends in detergents have been to lower phosphate content to prevent eutrification of lakes when detergents are disposed of in municipal waste. [Pg.135]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Water Activity. The rates of chemical reactions as well as microbial and en2yme activities related to food deterioration have been linked to the activity of water (qv) in food. Water activity, at any selected temperature, can be measured by determining the equiUbrium relative humidity surrounding the food. This water activity is different from the moisture content of the food as measured by standard moisture tests (4). [Pg.457]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

Acetylene is generated by the chemical reaction between calcium carbide [75-20-7J and water with the release of 134 kJ/mol (900 Btu/lb of pure calcium carbide). [Pg.379]


See other pages where Chemical reaction water is mentioned: [Pg.217]    [Pg.431]    [Pg.1515]    [Pg.209]    [Pg.217]    [Pg.65]    [Pg.211]    [Pg.42]    [Pg.217]    [Pg.431]    [Pg.1515]    [Pg.209]    [Pg.217]    [Pg.65]    [Pg.211]    [Pg.42]    [Pg.216]    [Pg.2085]    [Pg.107]    [Pg.62]    [Pg.253]    [Pg.276]    [Pg.108]    [Pg.140]    [Pg.1093]    [Pg.168]    [Pg.88]    [Pg.259]    [Pg.282]    [Pg.441]    [Pg.485]    [Pg.233]    [Pg.233]    [Pg.438]    [Pg.512]    [Pg.21]    [Pg.21]    [Pg.123]    [Pg.179]    [Pg.495]   


SEARCH



Chemical Reactions in Cloud and Fog Waters

Chemical Reactions in Water

Pore water chemistry chemical reactions

Water chemicals

Water pollution chemical reactions

© 2024 chempedia.info