Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction collision

As in all mathematical descriptions of transport phenomena, the theory of polydisperse multiphase flows introduces a set of dimensionless numbers that are pertinent in describing the behavior of the flow. Depending on the complexity of the flow (e.g. variations in physical properties due to chemical reactions, collisions, etc.), the set of dimensionless numbers can be quite large. (Details on the physical models for momentum exchange are given in Chapter 5.) As will be described in detail in Chapter 4, a kinetic equation can be derived for the number-density function (NDF) of the velocity of the disperse phase n t, X, v). Also in this example, for clarity, we will assume that the problem has only one particle velocity component v and is one-dimensional in physical space with coordinate x at time t. Furthermore, we will assume that the NDF has been normalized (by multiplying it by the volume of a particle) such that the first three velocity moments are... [Pg.8]

There is another aspect of collisions in liquid solution that is of particular interest with regard to chemical reactions. Collisions in solution are often repeated, so that multiple collisions of the same two molecules occur. Consider the molecules labeled A and B in Figure 7.1. Each molecule is surrounded by several neighboring molecules. In view of the short-range order typical of liquids, the neighboring molecules will all be located at... [Pg.190]

Conservation laws at a microscopic level of molecular interactions play an important role. In particular, energy as a conserved variable plays a central role in statistical mechanics. Another important concept for equilibrium systems is the law of detailed balance. Molecular motion can be viewed as a sequence of collisions, each of which is akin to a reaction. Most often it is the momentum, energy and angrilar momentum of each of the constituents that is changed during a collision if the molecular structure is altered, one has a chemical reaction. The law of detailed balance implies that, in equilibrium, the number of each reaction in the forward direction is the same as that in the reverse direction i.e. each microscopic reaction is in equilibrium. This is a consequence of the time reversal syimnetry of mechanics. [Pg.378]

While monomolecular collision-free predissociation excludes the preparation process from explicit consideration, themial imimolecular reactions involve collisional excitation as part of the unimolecular mechanism. The simple mechanism for a themial chemical reaction may be fomially decomposed into tliree (possibly reversible) steps (with rovibronically excited (CH NC) ) ... [Pg.765]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Reactive scattering or a chemical reaction is characterized by a rearrangement of the component particles within the collision system, thereby resulting in a change of the physical and chemical identity of the original collision reactants A + B into different collision products C + D. Total mass is conserved. The reaction is exothemiic when rel(CD) > (AB) and is endothermic when rel(CD) < (AB). A threshold energy is required for the endothemiic reaction. [Pg.2007]

Baer M (ed) 1985 Theory of Chemical Reaction Dynamics (Boca Raton, FL CRC Press) vols 1-4 Bernstein R B (ed) 1979 Atom-Molecule Collision Theory A Guide for the Experimentalist (New York Plenum)... [Pg.2058]

Marcus R A 1966 On the analytical mechanics of chemical reactions. Quantum mechanics of linear collisions J. Chem. Phys. 45 4500... [Pg.2324]

The science of reaction kinetics between molecular species in a homogeneous gas phase was one of the earliest helds to be developed, and a quantitative calculation of tire rates of chemical reactions was considerably advatrced by the development of the collision theoty of gases. According to this approach the rate at which the classic reaction... [Pg.45]

A typical value of the collision number is 10 °s in gases at one atmosphere pressure and room temperature, and the number of successful collisions which can bring about the chemical reaction is equal to this number multiplied by the Anhenius or probability factor, exp(— /f 7 ), where E is the activation energy, the critical collision energy needed for reaction to occur. [Pg.46]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

The time required for atmospheric chemical processes to occur is dependent on chemical kinetics. Many of the air quality problems of major metropolitan areas can develop in just a few days. Most gas-phase chemical reactions in the atmosphere involve the collision of two or three molecules, with subsequent rearrangement of their chemical bonds to form molecules by combination of their atoms. Consider the simple case of a bimolecular reaction of the following type-. [Pg.167]

The collision tlieory for bimolecular reactions assumes that a chemical reaction occurs when two molecules collide with enough energy to penetrate the molecular van der Waals repulsive forces, thus combining together. For the bimolecular collisions of unlike molecules A, the collision number is ... [Pg.14]

In chemiluminescence, some of the chemical reaction products developed remain in an excited state and radiate light when the excitation is discharged. This is particularly so at low pressures, when the collision frequency is low the excitation is discharged as light radiation. The extra energy bound to the excited molecule can discharge through impact or molecular dissociation. [Pg.1301]

It is easier to explain why W, = Q3 if we say that the energy fV, was stored in the chemical substances H2(g) and O (g). We assign to these (and all other) substances the capacity to store energy and we call it heat content. This permits us to say that energy is conserved at all times during a chemical reaction as it is in billiard ball collisions and in stretched rubber bands. [Pg.116]

As has been proposed, in order for a chemical reaction to occur, particles must collide. The particles may be atoms, molecules, or ions. As a result of collisions, there can be rearrangements of atoms, electrons, and chemical bonds, with the resultant production of new species. As an example, let us take another look at the reaction between Fe+2 and MnO in acid solution ... [Pg.127]

There are two features of this example that are rather common. First, none of the steps in the reaction mechanism requires the collision of more than two particles. Most chemical reactions proceed by sequences of steps, each involving only two-particle collisions. Second, the overall or net reaction does not show the mechanism. In general, the mechanism of a reaction cannot be deduced from the net equation for the reaction , the various steps by which atoms are rearranged and recombined must be determined through experiment. [Pg.128]

These observations remind us of Chapter 8, in which we considered the factors that determine the rate of a chemical reaction. Of course, the same ideas apply here. We can draw qualitative information about the mechanism of the reaction by applying the collision theory. With quantitative study of the effects of temperature and concentration on the rate, we should be able to construct potential energy diagrams like those shown in Figure 8-6 (p. 134). [Pg.331]

Conservation of energy in a billiard ball collision, 114 in a chemical reaction, 115 in a stretched rubber band, 114 law of, 113, 117, 207 Constant heal summation law, 111 Contact process, HtSO<, 227 Coordination number, 393 Copper... [Pg.457]


See other pages where Chemical reaction collision is mentioned: [Pg.216]    [Pg.334]    [Pg.216]    [Pg.334]    [Pg.41]    [Pg.149]    [Pg.664]    [Pg.816]    [Pg.871]    [Pg.958]    [Pg.1003]    [Pg.1056]    [Pg.1056]    [Pg.2059]    [Pg.2059]    [Pg.2145]    [Pg.2798]    [Pg.2804]    [Pg.2808]    [Pg.2997]    [Pg.3013]    [Pg.273]    [Pg.108]    [Pg.18]    [Pg.121]    [Pg.46]    [Pg.73]    [Pg.390]    [Pg.108]    [Pg.512]    [Pg.126]    [Pg.129]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Chemical reaction collision model

Chemical reaction rates, collision

Chemical reaction rates, collision assumptions

Chemical reaction rates, collision completeness

Chemical reaction rates, collision definitions

Chemical reaction rates, collision equilibrium rate constant

Chemical reaction rates, collision molecules

Chemical reaction rates, collision rate constant

Chemical reaction rates, collision theory

Chemical reaction rates, collision transition probability

Chemical reactions collision theory

Chemical reactions molecular collisions, frequency

Collision theory of chemical reaction rates

Collision theory of chemical reactions

Collisions, and chemical reactions

The Collision Theory of Chemical Reactions

© 2024 chempedia.info