Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical properties coatings

AppHcations for electroplated indium coatings include indium bump bonding for shicon semiconductor die attachment to packaging substrates and miscehaneous appHcations where the physical or chemical properties of indium metal are desired as a plated deposit. [Pg.80]

Chemical Properties. MSA combines high acid strength with low molecular weight. Its pK (laser Raman spectroscopy) is —1.9, about twice the acid strength of HCl and half the strength of sulfuric acid. MSA finds use as catalyst for esterification, alkylation, and in the polymerisation and curing of coatings (402,404,405). The anhydrous acid is also usefijl as a solvent. [Pg.154]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

The most significant chemical property of zinc is its high reduction potential. Zinc, which is above iron in the electromotive series, displaces iron ions from solution and prevents dissolution of the iron. For this reason, zinc is used extensively in coating steel, eg, by galvanizing and in zinc dust paints, and as a sacrificial anode in protecting pipelines, ship hulls, etc. [Pg.398]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]

Because there are many other properties that also are important, coatings cannot be selected only on this basis. The mechanical and chemical properties of the coating, change of properties with temperature, dielectric and adhesion properties, and particulady the cost of fabrication are all important parameters. Coatings can also be used to transport heat created away from a component and keep the component functioning as designed, or to protect a component from temperature variations in the environment. [Pg.123]

Alumina is used because it is relatively inert and provides the high surface area needed to efftciendy disperse the expensive active catalytic components. However, no one alumina phase possesses the thermal, physical, and chemical properties ideal for the perfect activated coating layer. A great deal of research has been carried out in search of modifications that can make one or more of the alumina crystalline phases more suitable. Eor instance, components such as ceria, baria, lanthana, or 2irconia are added to enhance the thermal characteristics of the alumina. Eigure 6 shows the thermal performance of an alumina-activated coating material. [Pg.485]

A chemical property of silicones is the possibility of building reactivity on the polymer [1,32,33]. This allows the building of cured silicone networks of controlled molecular architectures with specific adhesion properties while maintaining the inherent physical properties of the PDMS chains. The combination of the unique bulk characteristics of the silicone networks, the surface properties of the PDMS segments, and the specificity and controllability of the reactive groups, produces unique materials useful as adhesives, protective encapsulants, coatings and sealants. [Pg.681]

Radiation-induced modification or processing of a polymer is a relatively sophisticated method than conventional thermal and chemical processes. The radiation-induced changes in polymer materials such as plastics or elastomers provide some desirable combinations of physical and chemical properties in the end product. Radiation can be applied to various industrial processes involving polymerization, cross-linking, graft copolymerization, curing of paints and coatings, etc. [Pg.861]

The most important information about the nanoparticles is the size, shape, and their distributions which crucially influence physical and chemical properties of nanoparticles. TEM is a powerful tool for the characterization of nanoparticles. TEM specimen is easily prepared by placing a drop of the solution of nanoparticles onto a carbon-coated copper microgrid, followed by natural evaporation of the solvent. Even with low magnification TEM one can distinguish the difference in contrast derived from the atomic weight and the lattice direction. Furthermore, selective area electron diffraction can provide information on the crystal structure of nanoparticles. [Pg.58]

Robert M., Terce M. Effect of gel and coatings on clay mineral chemical properties. In Inorganic Contaminants in the Vadose Zone, B. Bar-yosef, N.J. Barrow, J. Goldsmith, eds. Berlin, 1989. [Pg.349]

Biomolecules like antibodies attach to surfaces via a variety of mechanisms. This attachment phenomenon is controlled by the chemical properties of the surface, but can be influenced by factors such as pH and temperature. In the case of antibody coating to a solid support the use of so-called medium-binding plates is to be recommended. Coating conditions can be optimized by performing a checkerboard titration (in the following example the optimal coating antibody concentration is determined) ... [Pg.534]


See other pages where Chemical properties coatings is mentioned: [Pg.42]    [Pg.42]    [Pg.443]    [Pg.92]    [Pg.373]    [Pg.452]    [Pg.163]    [Pg.40]    [Pg.154]    [Pg.363]    [Pg.134]    [Pg.44]    [Pg.370]    [Pg.141]    [Pg.143]    [Pg.219]    [Pg.536]    [Pg.147]    [Pg.329]    [Pg.923]    [Pg.176]    [Pg.60]    [Pg.503]    [Pg.333]    [Pg.166]    [Pg.283]    [Pg.299]    [Pg.18]    [Pg.53]    [Pg.79]    [Pg.91]    [Pg.109]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Chemical Coated

Chemical Coating

Coatings properties

© 2024 chempedia.info