Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical potential thermodynamic

A possible reason for the departures from Pick s first law is the fact that the diffusion process tends to level chemical potentials (thermodynamic activities) rather than concentrations of the substances involved. Hence, the equation sometimes is written as... [Pg.53]

For a colloidal system containing a mixture of different biopolymers, in particular a protein-stabilized emulsion containing a hydrocolloid thickening agent, it is evident that the presence of thermodynamically unfavourable interactions (A u > 0) between the biopolymers, which increases their chemical potentials (thermodynamic activity) in the bulk aqueous phase, has important consequences also for colloidal structure and stability (Antipova and Semenova, 1997 Antipova et al., 1997 Dickinson and Semenova, 1992 Dickinson et al., 1998 Pavlovskaya et al., 1993 Tsap-kina et al., 1992 Semenova et al., 1999a Makri et al., 2005 Vega et al., 2005 Semenova, 2007). [Pg.241]

It is evident here that the rate-limiting stage (the reaction "bottleneck") that is the step with the largest difference of the stationary values of chemical potentials (thermodynamic rushes) of the interacting reaction groups is the one with minimal s,. This is identical to the case of the chain of noncatalytic transformations (1.54). [Pg.182]

Melting and sublimation temperatures, internal energy (i.e., structural energy), enthalpy (i.e., heat content), heat capacity, entropy, free energy and chemical potential, thermodynamic activity, vapor pressure, solubility... [Pg.432]

Free energy and chemical potential Thermodynamic activity Vapor pressure Solubility... [Pg.846]

Relative free energies determine important chemical quantities such as relative affinities of binding of ligands to receptor molecules, relative solubilities, relative electrode potentials of different substances, adsorption coefficients, and chemical potentials. Thermodynamic cycle free energy methodologies have become one of the most popular tools in the computational study of complex chemical systems. [Pg.81]

In thermodynamic terms the equilibrium constant is related to the standard chemical potential by the equation... [Pg.161]

It is generally assumed that isosteric thermodynamic heats obtained for a heterogeneous surface retain their simple relationship to calorimetric heats (Eq. XVII-124), although it may be necessary in a thermodynamic proof of this to assume that the chemical potential of the adsorbate does not show discontinu-... [Pg.659]

A careful analysis of the fundamentals of classical thermodynamics, using the Born-Caratheodory approach. Emphasis on constraints, chemical potentials. Discussion of difficulties with the third law. Few applications. [Pg.377]

The thermodynamic properties that we have considered so far, such as the internal energy, the pressure and the heat capacity are collectively known as the mechanical properties and can be routinely obtained from a Monte Carlo or molecular dynamics simulation. Other thermodynamic properties are difficult to determine accurately without resorting to special techniques. These are the so-called entropic or thermal properties the free energy, the chemical potential and the entropy itself. The difference between the mechanical emd thermal properties is that the mechanical properties are related to the derivative of the partition function whereas the thermal properties are directly related to the partition function itself. To illustrate the difference between these two classes of properties, let us consider the internal energy, U, and the Fielmholtz free energy, A. These are related to the partition function by ... [Pg.327]

As noted above, all of the partial molar quantities are concentration dependent. It is convenient to define a thermodynamic concentration called the activity aj in terms of which the chemical potential is correctly given by the relationship... [Pg.509]

The first point in developing the thermodynamic method is the observation that for equilbrium between two phases-say, a and 3-the chemical potential must be equal in both phases for all components ... [Pg.510]

Thermodynamics provide a straightforward method for quantifying this situation. The criterion for equilibrium is the equality of chemical potential in... [Pg.544]

The tme driving force for any diffusive transport process is the gradient of chemical potential rather than the gradient of concentration. This distinction is not important in dilute systems where thermodynamically ideal behavior is approached. However, it becomes important at higher concentration levels and in micropore and surface diffusion. To a first approximation the expression for the diffusive flux may be written... [Pg.258]

The interface region in a composite is important in determining the ultimate properties of the composite. At the interface a discontinuity occurs in one or more material parameters such as elastic moduli, thermodynamic parameters such as chemical potential, and the coefficient of thermal expansion. The importance of the interface region in composites stems from two main reasons the interface occupies a large area in composites, and in general, the reinforcement and the matrix form a system that is not in thermodynamic equiUbhum. [Pg.198]

Internal and External Phases. When dyeing hydrated fibers, for example, hydrophUic fibers in aqueous dyebaths, two distinct solvent phases exist, the external and the internal. The external solvent phase consists of the mobile molecules that are in the external dyebath so far away from the fiber that they are not influenced by it. The internal phase comprises the water that is within the fiber infrastmcture in a bound or static state and is an integral part of the internal stmcture in terms of defining the physical chemistry and thermodynamics of the system. Thus dye molecules have different chemical potentials when in the internal solvent phase than when in the external phase. Further, the effects of hydrogen ions (H" ) or hydroxyl ions (OH ) have a different impact. In the external phase acids or bases are completely dissociated and give an external or dyebath pH. In the internal phase these ions can interact with the fiber polymer chain and cause ionization of functional groups. This results in the pH of the internal phase being different from the external phase and the theoretical concept of internal pH (6). [Pg.351]

Determining the cell potential requites knowledge of the thermodynamic and transport properties of the system. The analysis of the thermodynamics of electrochemical systems is analogous to that of neutral systems. Eor ionic species, however, the electrochemical potential replaces the chemical potential (1). [Pg.62]

Perhaps the most significant of the partial molar properties, because of its appHcation to equiHbrium thermodynamics, is the chemical potential, ]1. This fundamental property, and related properties such as fugacity and activity, are essential to mathematical solutions of phase equihbrium problems. The natural logarithm of the Hquid-phase activity coefficient, Iny, is also defined as a partial molar quantity. For Hquid mixtures, the activity coefficient, y, describes nonideal Hquid-phase behavior. [Pg.235]

Thermodynamics of Liquid—Liquid Equilibrium. Phase splitting of a Hquid mixture into two Hquid phases (I and II) occurs when a single hquid phase is thermodynamically unstable. The equiUbrium condition of equal fugacities (and chemical potentials) for each component in the two phases allows the fugacitiesy andy in phases I and II to be equated and expressed as ... [Pg.238]

Equation (4-8) is the fundamental property relation for singlephase PVT systems, from which all other equations connecting properties of such systems are derived. The quantity is called the chemical potential of ecies i, and it plays a vital role in the thermodynamics of phase ana chemical equilibria. [Pg.515]

Since the infinite dilution values D°g and Dba. re generally unequal, even a thermodynamically ideal solution hke Ya = Ys = 1 will exhibit concentration dependence of the diffusivity. In addition, nonideal solutions require a thermodynamic correction factor to retain the true driving force for molecular diffusion, or the gradient of the chemical potential rather than the composition gradient. That correction factor is ... [Pg.598]

This expression can be used to describe both pore and solid diffusion so long as the driving force is expressed in terms of the appropriate concentrations. Although the driving force should be more correctly expressed in terms of chemical potentials, Eq. (16-63) provides a qualitatively and quantitatively correct representation of adsorption systems so long as the diffusivity is allowed to be a function of the adsorbate concentration. The diffusivity will be constant only for a thermodynamically ideal system, which is only an adequate approximation for a limited number of adsorption systems. [Pg.1510]

Processes in which solids play a rate-determining role have as their principal kinetic factors the existence of chemical potential gradients, and diffusive mass and heat transfer in materials with rigid structures. The atomic structures of the phases involved in any process and their thermodynamic stabilities have important effects on drese properties, since they result from tire distribution of electrons and ions during tire process. In metallic phases it is the diffusive and thermal capacities of the ion cores which are prevalent, the electrons determining the thermal conduction, whereas it is the ionic charge and the valencies of tire species involved in iron-metallic systems which are important in the diffusive and the electronic behaviour of these solids, especially in the case of variable valency ions, while the ions determine the rate of heat conduction. [Pg.148]

The ionic and elecU oii or positive hole chemical potentials are related tluough thermodynamic relations such as... [Pg.261]

A thermodynamic inhibitor alters the chemical potential of the hydrate pha.se such that the hydrate formation point is displaced to a lower temperature and/or a higher pressure. [Pg.103]

This is our principal result for the rate of desorption from an adsorbate that remains in quasi-equihbrium throughout desorption. Noteworthy is the clear separation into a dynamic factor, the sticking coefficient S 6, T), and a thermodynamic factor involving single-particle partition functions and the chemical potential of the adsorbate. The sticking coefficient is a measure of the efficiency of energy transfer in adsorption. Since energy supply from the... [Pg.442]


See other pages where Chemical potential thermodynamic is mentioned: [Pg.96]    [Pg.218]    [Pg.310]    [Pg.176]    [Pg.95]    [Pg.96]    [Pg.218]    [Pg.310]    [Pg.176]    [Pg.95]    [Pg.14]    [Pg.14]    [Pg.721]    [Pg.465]    [Pg.507]    [Pg.198]    [Pg.341]    [Pg.349]    [Pg.248]    [Pg.260]    [Pg.276]    [Pg.420]    [Pg.79]    [Pg.4]    [Pg.191]    [Pg.236]    [Pg.247]    [Pg.252]   


SEARCH



Chemical equilibria thermodynamics standard potential/Gibbs free energy

Chemical equilibria thermodynamics standard potentials

Chemical potential and thermodynamic activity

Chemical potential statistical thermodynamics

Chemical potential, thermodynamic-scaling

Chemical thermodynamics

Extensive thermodynamic properties chemical potential

Intensive thermodynamic properties chemical potential

Thermodynamic potentials

Thermodynamic properties chemical potentials

Thermodynamics chemical potential

Thermodynamics chemical potential

Thermodynamics partial mass chemical potential

Thermodynamics potentials

© 2024 chempedia.info