Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical manufacture reactions

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

The development section serves as an intermediary between laboratory and industrial scale and operates the pilot plant. A dkect transfer from the laboratory to industrial-scale processes is stiH practiced at some small fine chemicals manufacturers, but is not recommended because of the inherent safety, environmental, and economic risks. Both equipment and plant layout of the pilot plant mirror those of an industrial multipurpose plant, except for the size (typically 100 to 2500 L) of reaction vessels and the degree of process automation. [Pg.436]

Hydrogen chloride is produced by the direct reaction of hydrogen and chlorine, by reaction of metal chlorides and acids, and as a by-product from many chemical manufacturing processes such as chlorinated hydrocarbons. [Pg.445]

Diethyl ether [60-29-7] is one of the more important members of the ether family. It is a colorless, very volatile, highly flammable Hquid with a sweet, pungent odor and burning taste. As a commercial product it is available in several grades it is used in chemical manufacture, as a solvent, extractant, or reaction medium, and as a general anesthetic. [Pg.427]

The control of chemical reactions (e.g., esterification, sulfonation, nitration, alkylation, polymerization, oxidation, reduction, halogenation) and associated hazards are an essential aspect of chemical manufacture in the CPI. The industries manufacture nearly all their products, such as inorganic, organic, agricultural, polymers, and pharmaceuticals, through the control of reactive chemicals. The reactions that occur are generally without incident. Barton and Nolan [1] examined exothermic runaway incidents and found that the principal causes were ... [Pg.910]

Kinetics can also be applied to the optimization of process conditions, as in organic syntheses, analytical reactions, and chemical manufacturing. This last example constitutes an important aspect of chemical engineering. Yet another practical use of chemical kinetics is for the determination and control of the stability of commercial products such as pharmaceutical dosage forms, foods, paints, and metals. [Pg.2]

The reaction has a broad scope and is currently being widely applied in fine chemicals manufacture. One limitation is that the arylating agent is largely limited to relatively expensive aryl bromides and iodides (see, however, Reetz et al, 1998), while the process... [Pg.41]

As mentioned earlier, a major cause of high costs in fine chemicals manufacturing is the complexity of the processes. Hence, the key to more economical processes is reduction of the number of unit operations by judicious process integration. This pertains to the successful integration of, for example, chemical and biocatalytic steps, or of reaction steps with (catalyst) separations. A recurring problem in the batch-wise production of fine chemicals is the (perceived) necessity for solvent switches from one reaction step to another or from the reaction to the product separation. Process simplification, e.g. by integration of reaction and separation steps into a single unit operation, will provide obvious economic and environmental benefits. Examples include catalytic distillation, and the use of (catalytic) membranes to facilitate separation of products from catalysts. [Pg.54]

Supersaturation can also be achieved by adding a liquid that is miscible with the solvent and decreases the solubility of the solute in the mixed solvent. This is called precipitation. In fine chemicals manufacture, the solid is usually dissolved in an organic solvent and water is used as the desalting agent. Precipitation also occurs when a solid product, which is insoluble in the reaction mixture, is formed by chemical reaction. For instance, a phenolic product can be purified by three possible routes ... [Pg.240]

Liquid-liquid reactions occur between two or more liquid phases whereby a system consisting of an organic and an aqueous phase is applied most frequently. Usually reaction takes place in one phase only. Phase-transfer catalysts are sometimes used to make transfer of a reactant to the reacting phase easier. Among typical liquid-liquid reactions utilized in fine chemicals manufacture are nitrations with mixtures of nitric and sulphuric acid, conventional hydroxylations performed with hydrogen peroxide, esterifications, alkylations, brominations, and iodinations. [Pg.261]

In the vast majority of gas-solid reactions, gaseous or evaporated compounds react at the surface of a solid catalyst. These catalytic processes are very frequently used in the manufacture of bulk chemicals. They are much less popular in processing of the large molecules typical of fine chemistry. These molecules are usually thermally sensitive and as such they will at least partially decompose upon evaporation. Only thermally stable compounds can be dealt with in gas-solid catalytic processes. Examples in fine chemicals manufacture are gas-phase catalytic aminations of volatile aldehydes, alcohols, and ketones with ammonia, with hydrogen as... [Pg.261]

A particular shape of reactor, its specific internals, arrangements made because of special properties and/or behaviour of the reaction mixture, etc. are used as criteria to qualify a reactor. In fine chemicals manufacture two main groups of cylindrical reactors are in common use, viz. stirred-tank reactors with a small aspect ratio, and column reactors with a relatively large aspect ratio. Both types can be equipped with specific internals depending on process requirements. Researchers and designers are well acquainted with these reactors. A tendency to duplicate known equipment usually wins when considering the choice of reactor for a particular process. As a consequence, more and more stirred-tank reactors and column reactors are in use. [Pg.263]

Other reactor types are also used for gas-liquid reactions, but they are not very common in fine chemicals manufacture. Spray towers and jet reactors are used when the liquid phase is to be dispersed. In spray towers the liquid is sprayed at the top of the reactor while the gas is flowing upward. The spray reactor is useful when a solid product, possibly suspended in the liquid, is formed, or if the gas-phase pressure drop must be minimized. In a jet reactor, the liquid is introduced to the reaction zone through a nozzle. The gas flows in, being sucked by the liquid. [Pg.267]

Empirical grey models based on non-isothermal experiments and tendency modelling will be discussed in more detail below. Identification of gross kinetics from non-isothermal data started in the 1940-ties and was mainly applied to fast gas-phase catalytic reactions with large heat effects. Reactor models for such reactions are mathematically isomorphical with those for batch reactors commonly used in fine chemicals manufacture. Hopefully, this technique can be successfully applied for fine chemistry processes. Tendency modelling is a modern technique developed at the end of 1980-ties. It has been designed for processing the data from (semi)batch reactors, also those run under non-isothermal conditions. [Pg.319]

The very basis of the kinetic model is the reaction network, i.e. the stoichiometry of the system. Identification of the reaction network for complex systems may require extensive laboratory investigation. Although complex stoichiometric models, describing elementary steps in detail, are the most appropriate for kinetic modelling, the development of such models is time-consuming and may prove uneconomical. Moreover, in fine chemicals manufacture, very often some components cannot be analysed or not with sufficient accuracy. In most cases, only data for key reactants, major products and some by-products are available. Some components of the reaction mixture must be lumped into pseudocomponents, sometimes with an ill-defined chemical formula. Obviously, methods are needed that allow the development of simple... [Pg.323]


See other pages where Chemical manufacture reactions is mentioned: [Pg.106]    [Pg.106]    [Pg.106]    [Pg.106]    [Pg.2804]    [Pg.517]    [Pg.437]    [Pg.9]    [Pg.400]    [Pg.208]    [Pg.262]    [Pg.530]    [Pg.409]    [Pg.111]    [Pg.910]    [Pg.372]    [Pg.634]    [Pg.557]    [Pg.125]    [Pg.156]    [Pg.157]    [Pg.205]    [Pg.390]    [Pg.214]    [Pg.108]    [Pg.28]    [Pg.679]    [Pg.21]    [Pg.5]    [Pg.25]    [Pg.30]    [Pg.156]    [Pg.181]    [Pg.226]    [Pg.256]    [Pg.261]    [Pg.261]    [Pg.275]   
See also in sourсe #XX -- [ Pg.626 , Pg.627 , Pg.644 , Pg.645 , Pg.646 , Pg.647 , Pg.648 , Pg.695 , Pg.696 , Pg.697 , Pg.698 , Pg.699 , Pg.700 , Pg.701 , Pg.706 , Pg.707 , Pg.708 , Pg.709 , Pg.710 , Pg.711 , Pg.756 , Pg.758 ]




SEARCH



Chemicals manufacture

Manufacturers Chemicals

Manufacturing reactions

© 2024 chempedia.info