Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Kinetics and Phase Equilibrium

It may be seen that components of the model discussed thus far are generally applicable to any two phase ideal back-mixed reactor. Chemical kinetics and phase equilibrium are the two components which make the model unique. [Pg.404]

The accuracy of the thermodynamic data has a significant effect on RCM computation. In the case of slow reactions both kinetics and phase equilibrium should be modelled accurately. If the reaction is fast enough the chemical reaction prevails. In many cases chemical equilibrium may be taken as the reference. Consequently, accurate knowledge of the chemical equilibrium constant is needed. When reactive azeotropes and/or phase splitting might occur accurate modelling of phase equilibrium is also needed. [Pg.470]

First, the simple thermodynamic description of pe (or Eh) and pH are both most directly applicable to the liquid aqueous phase. Redox reactions can and do occur in the gas phase, but the rates of such processes are described by chemical kinetics and not by equilibrium concepts of thermodynamics. For example, the acid-base reaction... [Pg.421]

The main goal of this chapter is to review the most widely used modeling techniques to analyze sorption/desorption data generated for environmental systems. Since the definition of sorption/desorption (i.e., a mass-transfer mechanism) process requires the determination of the rate at which equilibrium is approached, some important aspects of chemical kinetics and modeling of sorption/desorption mechanisms for solid phase systems are discussed. In addition, the background theory and experimental techniques for the different sorption/ desorption processes are considered. Estimations of transport parameters for organic pollutants from laboratory studies are also presented and evaluated. [Pg.168]

Understanding the kinetics of contaminant adsorption on the subsurface solid phase requires knowledge of both the differential rate law, explaining the reaction system, and the apparent rate law, which includes both chemical kinetics and transport-controlled processes. By studying the rates of chemical processes in the subsurface, we can predict the time necessary to reach equilibrium or quasi-state equilibrium and understand the reaction mechanism. The interested reader can find detailed explanations of subsurface kinetic processes in Sparks (1989) and Pignatello (1989). [Pg.102]

Chemical Equilibrium. Although CVD is a nonequilibrium process controlled by chemical kinetics and transport phenomena, equilibrium analysis is usefiil in understanding the CVD process. The chemical reactions and phase equilibria determine the feasibility of a particular process and the final state attainable. Equilibrium computations with intentionally limited reactants can provide insights into reaction mechanisms, and equilibrium analysis can be used also to estimate the defect concentrations in the solid phase and the composition of multicomponent films. [Pg.221]

In this case, as shown in Figure 4, the subsystems are stoichiometry, material balance, energy balance, chemical kinetics, and interphase mass transfer. The mass transfer phenomena can be subdivided into (1) phase equilibrium which defines the driving force and (2) the transport model. In a general problem, chemical kinetics may be subdivided into (1) the rate process and (2) the chemical equilibrium. The next step is to develop models to describe the subsystems. Except for chemical kinetics, generally applicable mathematical equations based on fundamental principles of physics and chemistry are available for describing the subsystems. [Pg.401]

Process models for RD have to take into account both the chemical and the physical side of the process. Two basic types of model are used stage models, which are based on the idea of the equilibrium stage with phase equilibrium between the outlet streams, and rate-based models, which explicitly take into account heat and mass transfer. Similarly to the physical side of RD, the chemical reaction is either modeled using the assumption of chemical equilibrium or reaction kinetics are taken into account. Note that a kinetic model, either for physical transport processes or for chemical reactions, always includes an equilibrium model. The equilibrium model is the stationary solution of the kinetic model, for which all derivatives with respect to time become zero. Hence, whatever model type is used, it has to be based on a sound knowledge of the chemical and phase equilibrium, which is supplied by thermodynamic methods. Starting from there, kinetic effects can be included. [Pg.66]

The examples given in this and the previous sections underline the necessity for using thermodynamic consistent models of chemical equilibria and phase equilibria. It should be kept in mind that this also applies to reaction kinetic models, which always contain information on the chemical equilibrium. It should, however, be taken into account that there is also a price to pay for the advantages of thermodynamic consistency the evaluation of phase equilibrium data and chemical equilibrium data can no longer be carried out separately and any change either in the chemical reaction model or in the phase equilibrium model will affect the other model too. [Pg.86]

The staff have been active in producing books for the profession. Professor Walas has written three texts "Reaction Kinetics for Chemical Engineers" (1959), "Phase Equilibrium in Chemical Engineering" (1985) and "Chemical Process Equipment" (1988). Professor Green, with Maloney as his assistant, acted as editor of the sixth edition of "Perry s Chemical Engineers Handbook", (1984). Professor Willhite has prepared a commissioned text for the Society of Petroleum Engineers entitled "Waterflooding" (1986). [Pg.343]

In [308] the filler effect on polymerization kinetics and phase separation in model blends of two linear polymers formed in situ without cross-linking was studied. Blends of PU and PMMA were prepared in the presence of various amounts of fumed silica. It was shown that the filler affects the rates of both reactions. In addition, filler exerts an influence on the phase separation induced by the chemical reaction. Increasing the amount of filler increases the time for the onset of phase separation. The effects observed were explained both by the increase in the viscosity of the reaction system due to introducing filler and by selective adsorption of the reaction components at the interface with filler particles. In all cases, phase separation at the early stages of reaction proceeds in a four-component system (two polymers formed and two initial compounds) and obeys the spinodal mechanism. It was also shown that the final morphology arises far from the end of the reaction and before establishing the equilibrium state. [Pg.198]

Mukherjee studied the gas phase equilibria and the kinetics of the possible chemical reactions in the pack-chromising of iron by the iodide process. One conclusion was that iodine-etching of the iron preceded chromis-ing also, not unexpectedly, the initial rate of chromising was controlled by transport of chromium iodide. Neiri and Vandenbulcke calculated, for the Al-Ni-Cr-Fe system, the partial pressures of chlorides and mixed chlorides in equilibrium with various alloys and phases, and so developed for pack aluminising a model of gaseous transport, solid-state transport, and equilibria at interfaces. [Pg.414]

The 2nd law is true only statistically and does not apply to individual particles nor to a small number of particles, i.e. thermodynamics is concerned with bulk properties of systems. Thermodynamics thus has many limitations, but is particularly valuable in defining the nature and structure of phases when equilibrium (a state that does not vary with time) has been attained thermodynamics provides no information on the rate at which the reaction proceeds to equilibrium, which belongs to the realm of chemical kinetics. [Pg.1219]

In processing, it is frequently necessary to separate a mixture into its components and, in a physical process, differences in a particular property are exploited as the basis for the separation process. Thus, fractional distillation depends on differences in volatility. gas absorption on differences in solubility of the gases in a selective absorbent and, similarly, liquid-liquid extraction is based on on the selectivity of an immiscible liquid solvent for one of the constituents. The rate at which the process takes place is dependent both on the driving force (concentration difference) and on the mass transfer resistance. In most of these applications, mass transfer takes place across a phase boundary where the concentrations on either side of the interface are related by the phase equilibrium relationship. Where a chemical reaction takes place during the course of the mass transfer process, the overall transfer rate depends on both the chemical kinetics of the reaction and on the mass transfer resistance, and it is important to understand the relative significance of these two factors in any practical application. [Pg.573]

The failure to identify the necessary authigenic silicate phases in sufficient quantities in marine sediments has led oceanographers to consider different approaches. The current models for seawater composition emphasize the dominant role played by the balance between the various inputs and outputs from the ocean. Mass balance calculations have become more important than solubility relationships in explaining oceanic chemistry. The difference between the equilibrium and mass balance points of view is not just a matter of mathematical and chemical formalism. In the equilibrium case, one would expect a very constant composition of the ocean and its sediments over geological time. In the other case, historical variations in the rates of input and removal should be reflected by changes in ocean composition and may be preserved in the sedimentary record. Models that emphasize the role of kinetic and material balance considerations are called kinetic models of seawater. This reasoning was pulled together by Broecker (1971) in a paper called "A kinetic model for the chemical composition of sea water."... [Pg.268]

Chemical vapor deposition processes are complex. Chemical thermodynamics, mass transfer, reaction kinetics and crystal growth all play important roles. Equilibrium thermodynamic analysis is the first step in understanding any CVD process. Thermodynamic calculations are useful in predicting limiting deposition rates and condensed phases in the systems which can deposit under the limiting equilibrium state. These calculations are made for CVD of titanium - - and tantalum diborides, but in dynamic CVD systems equilibrium is rarely achieved and kinetic factors often govern the deposition rate behavior. [Pg.275]

The analysis of thermodynamic data obeying chemical and electrochemical equilibrium is essential in understanding the reactivity of a system to be used for deposition/synthesis of a desired phase prior to moving to experiment and/or implementing complementary kinetic analysis tools. Theoretical and (quasi-)equilibrium data can be summarized in Pourbaix (potential-pH) diagrams, which may provide a comprehensive picture of the electrochemical solution growth system in terms of variables and reaction possibilities under different conditions of pH, redox potential, and/or concentrations of dissolved and electroactive substances. [Pg.85]

Knowledge of the 90 chemical elements and their properties in compounds led to the construction, by man, of a unique table of elements, the Periodic Table, of 18 Groups in six periods in a pattern fully explained by quantum theory, described in Chapter 2. There is then a huge variety of chemical combinations possible on the Earth and limitations on what is observable are related to element position in this Table. It also relates to the thermodynamic and/or kinetic stability of particular combinations of them in given physical circumstances (Table 11.3). The initial state of the surface of the Earth with which we are concerned was a dynamic water layer, the sea, covering a crust mainly of oxides and some sulfides and with an atmosphere of NH3, HCN, N2, C02(C0, CH4), H20, with some H2 but no 02. This combination of phases and their contents then produced an aqueous solution layer of particular components in which there were many concentration restrictions between it and the components of the other two layers due to thermodynamic stability, equilibria, or kinetic stability of the chemicals trapped in the phases. It is the case that equilibrium... [Pg.416]


See other pages where Chemical Kinetics and Phase Equilibrium is mentioned: [Pg.180]    [Pg.183]    [Pg.185]    [Pg.189]    [Pg.191]    [Pg.193]    [Pg.180]    [Pg.183]    [Pg.185]    [Pg.189]    [Pg.191]    [Pg.193]    [Pg.113]    [Pg.347]    [Pg.791]    [Pg.753]    [Pg.222]    [Pg.311]    [Pg.100]    [Pg.548]    [Pg.28]    [Pg.613]    [Pg.268]    [Pg.224]    [Pg.395]    [Pg.296]    [Pg.227]    [Pg.290]    [Pg.731]    [Pg.887]    [Pg.86]    [Pg.544]    [Pg.5]    [Pg.258]    [Pg.398]    [Pg.3]    [Pg.332]    [Pg.184]   


SEARCH



Chemical and phase equilibrium

Chemical kinetics

Chemical kinetics and

Equilibrium and phase

Equilibrium chemical kinetics

Equilibrium kinetics

Equilibrium, chemical phase

Kinetic Chemicals

Kinetics and Phases

Kinetics and equilibrium

Phase chemical

Phase kinetic

© 2024 chempedia.info