Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intuition, chemical

According to Eq. (A.4), if < 0, the ground state will be the in-phase combination, and the out-of-phase one, an excited state. On the other hand, if > 0, the ground state will be the out-of-phase combination, while the in-phase one is an excited state. This conclusion is far reaching, since it means that the electronic wave function of the ground state is nonsymmetric in this case, in contrast with common chemical intuition. We show that when an even number of electron pairs is exchanged, this is indeed the case, so that the transition state is the out-of-phase combination. [Pg.392]

Previous studies with a variety of datasets had shown the importance of charge distribution, of inductive effect), of r-electronegativity, resonance effect), and of effective polarizability, aeffi polarizability effect) for details on these methods see Section 7.1). All four of these descriptors on all three carbon atoms were calculated. However, in the final study, a reduced set of descriptors, shown in Table 3-4, was chosen that was obtained both by statistical methods and by chemical intuition. [Pg.194]

Ldwdin population analysis avoids the problem of negative populations or populations greater than 2. Some quantum chemists prefer the Ldwdin approach to that of Mulliken as the charges are often closer to chemically intuitive values and are less sensitive to basis set. [Pg.100]

Several methods of quantitative description of molecular structure based on the concepts of valence bond theory have been developed. These methods employ orbitals similar to localized valence bond orbitals, but permitting modest delocalization. These orbitals allow many fewer structures to be considered and remove the need for incorporating many ionic structures, in agreement with chemical intuition. To date, these methods have not been as widely applied in organic chemistry as MO calculations. They have, however, been successfully applied to fundamental structural issues. For example, successful quantitative treatments of the structure and energy of benzene and its heterocyclic analogs have been developed. It remains to be seen whether computations based on DFT and modem valence bond theory will come to rival the widely used MO programs in analysis and interpretation of stmcture and reactivity. [Pg.65]

Sections 3.1 and 3.2 considered this problem Given a complex kinetic scheme, write the differential rate equations find the integrated rate equations or the concentration-time dependence of reactants, intermediates, and products and obtain estimates of the rate constants from experimental data. Little was said, however, about how the kinetic scheme is to be selected. This subject might be dismissed by stating that one makes use of experimental observations combined with chemical intuition to postulate a reasonable kinetic scheme but this is not veiy helpful, so some amplification is provided here. [Pg.115]

Table 8-2 lists several physical properties pertinent to our concern with the effects of solvents on rates for 40 common solvents. The dielectric constant e is a measure of the ability of the solvent to separate charges it is defined as the ratio of the electric permittivity of the solvent to the permittivity of the vacuum. (Because physicists use the symbol e for permittivity, some authors use D for dielectric constant.) Evidently e is dimensionless. The dielectric constant is the property most often associated with the polarity of a solvent in Table 8-2 the solvents are listed in order of increasing dielectric constant, and it is evident that, with a few exceptions, this ranking accords fairly well with chemical intuition. The dielectric constant is a bulk property. [Pg.389]

You will see shortly that an exact solution of the electronic Schrodinger equation is impossible, because of the electron-electron repulsion term g(ri, r2). What we have to do is investigate approximate solutions based on chemical intuition, and then refine these models, typically using the variation principle, until we attain the required accuracy. This means in particular that any approximate solution will not satisfy the electronic Schrodinger equation, and we will not be able to calculate the energy from an eigenvalue equation. First of all, let s see why the problem is so difficult. [Pg.87]

As computational facilities improve, electronic wavefunctions tend to become more and more complicated. A configuration interaction (Cl) calculation on a medium-sized molecule might be a linear combination of a million Slater determinants, and it is very easy to lose sight of the chemistry and the chemical intuition , to say nothing of the visualization of the results. Such wavefunctions seem to give no simple physical picture of the electron distribution, and so we must seek to find ways of extracting information that is chemically useful. [Pg.99]

For the minute, imagine an HF-LCAO treatment of just the jr-electrons in ethene where each carbon atom contributes just one electron and one atomic orbital of the correct symmetry to the conjugated system. Without any particular justification except chemical intuition, we make the following assumptions. [Pg.123]

Looking back, 1 seem to have made two contradictory statements about the basis fiinctions Xt used in the PPP model. On the one hand, I appealed to your chemical Intuition and prior knowledge by suggesting that the basis functions should be j garded as ordinary atomic orbitals of the correct symmetry (i.e. 2p orbitals). On the other hand, 1 told you that the basis functions used in such calculations are taken to be orthonormal and so... [Pg.143]

At the molecular level, electric quadrupoles can lead to useful structural information. Thus, whilst the absence of a permanent electric dipole in CO2 simply means that the molecule is linear, the fact that the electric quadrupole moment is negative shows that our simple chemical intuition of 0 C" 0 is correct. The definition of quadrupole moment is only independent of the coordinate origin when the charges sum to zero and when the electric dipole moment is zero. [Pg.269]

The atomic charges estimated from a kappa refinement are given in Table 4 as well as those obtained from the SC data [11]. The main difference is the positive charge obtained for the C atom from the CCD data (in agreement with chemical intuition) compared to a small negative one obtained using the point detector data. [Pg.229]

The final step in the molecular-mechanics calculation of molecular conformation involves the minimization of the energy Approximations are involved whose importance is not always clear. Usually, all first derivatives with respect to the various internal coordinates are set equal to zero - although these coordinates are often not independent (see Section 10.6). Furthermore, the final conformation obtained depends on the assumed initial structure. Therefore, (he method must be applied with care and a certain amount of chemical intuition. In spite of these uncertainties the molecular mechanics method has been employed with considerable success, particularly in the conformational analysis of branched alkanes. For molecules containing hetero-atoms, it can be applied, but with somewhat less confidence. [Pg.127]

Pilme J, Piquemal J-P (2008) Advancing beyond charge analysis using the electronic localization function Chemically intuitive distribution of electrostatic moments. J Comput Chem 29 1440... [Pg.169]

Relatively little progress has been achieved in the identification and recognition of single asymmetric centers. For this purpose, it is not obvious that C2 symmetry offers any advantages or is even appropriate. Chemical intuition suggests that 3 domains... [Pg.212]

In the following sections, studies of isomeric ions are reported in which the ions are reactively probed. Where calculations are available, information on potential energy surfaces is given. This is usually the structure of the stable isomeric forms and transition states and their relative energies thus only points on the potential surface are known. The detailed form of the potential surface is almost never available nor is the connectivity between the various states usually established theoretically (chemical intuition is often used to connect the states). Pertinent experimental data on CID and metastable ions, isomers produced in binary reactions, and potential surfaces probed by binary reactions (with the excited isomeric ion as the reaction intermediate) are also given. [Pg.89]

How do we know or decide what terms to put in the spin Hamiltonian This is a question of rather far-reaching importance because, since we look at our biomolecular systems through the framework of the spin Hamiltonian, our initial choice very much determines the quality limits of our final results. In other branches of spectroscopy this is sometimes referred to as a sporting activity. We are guided (one would hope) by a fine balance of intellectual inspection, (bio)chemical intuition, and practical considerations. In a more hypochondriacal vein, one could also call this the Achilles heel of the spectroscopy a wrong choice of the model (the spin Hamiltonian) will not lead to an accurate description of nature represented by the paramagnetic biomolecule. [Pg.123]

The use of MO theory to find deep minima in the So surface, or geometries of stable molecules, is well known. A simplified rule would be to choose the geometry so as to allow efficient overlap of valence orbitals of the constituent atoms in a way giving bonding orbitals for all available electrons from pairs or larger sets of suitably hybridized atomic orbitals. No atomic orbitals occupied by one electron should be left over dangling free and unable to interact with others, since that would give radicals, biradicals, etc. Chemical intuition allows one to proceed almost automatically in cases of molecules of familiar types. [Pg.35]


See other pages where Intuition, chemical is mentioned: [Pg.384]    [Pg.386]    [Pg.289]    [Pg.354]    [Pg.10]    [Pg.118]    [Pg.118]    [Pg.180]    [Pg.223]    [Pg.346]    [Pg.15]    [Pg.45]    [Pg.457]    [Pg.84]    [Pg.256]    [Pg.619]    [Pg.4]    [Pg.108]    [Pg.137]    [Pg.145]    [Pg.147]    [Pg.193]    [Pg.320]    [Pg.4]    [Pg.163]    [Pg.16]    [Pg.125]    [Pg.137]    [Pg.171]    [Pg.147]    [Pg.490]    [Pg.492]   
See also in sourсe #XX -- [ Pg.363 ]

See also in sourсe #XX -- [ Pg.2 , Pg.14 , Pg.158 , Pg.273 ]

See also in sourсe #XX -- [ Pg.163 ]

See also in sourсe #XX -- [ Pg.317 ]

See also in sourсe #XX -- [ Pg.133 ]

See also in sourсe #XX -- [ Pg.284 , Pg.412 ]




SEARCH



Intuition

© 2024 chempedia.info