Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Compression

Avoid CMP chemistry that involves multicharged cations. Such chemicals compress the double charge layer and activate slurry agglomeration and process defectivity. Ions such as Al and Fe may initiate agglomeration and scratching at concentrations as low as lO to 10 M. [Pg.31]

Sandia Laboratories (Albuquerque) has recently completed a study on closed-cycle hydride engines based on the hydride chemical compression cycle (13) A practical demonstration unit was constructed to operate a water pump (lU). The down-hole bladder pump is capable of pumping against large hydrostatic heads. Coupled with a solar collection, this concept should find applications in arid third world countries. [Pg.246]

OSH Answers Compressed Gases-Hazards, Canadian Centre for Occupational Health Safety (CCOHS), Retrieved on March 25, 2006, from http //www.ccohs.ca/oshanswers/ chemicals/compressed/compress.html. 2005. [Pg.19]

Smirnov lA, Oskotskii VS (1978) Semiconductor-metal phase transition in rare-earth semiconductors (samarium monochalcogerrides). Sov Phys Uspekhi 21 117-140 Batsanov SS (1988) Correspondence berween the physical and the chemical compression of substances. Russ J Phys Chem 62 265-266... [Pg.326]

Association equation of state (AEOS). To first introduce the concept of chemical compressibility factor and the association constant K, assume there are tiq moles of a substance in which ail the molecules are in the form of monomers, i.e., singly dispersed molecules. Then, if the fluid behaves as an ideal gas, PV = n HT, where Vq is the volume at pressure P. Let us now assume that some of the molecules will associate so that the true number of moles is then, the ideal gas PVTrela-... [Pg.157]

Reactive and corrosive chemicals Compressed gases Cryogenic liquids... [Pg.277]

Chemical exposure and highly hazardous chemicals Compressed gases Asbestos, lead, and mercury Hazardous waste Pesticides... [Pg.65]

Benzene was first isolated by Faraday in 1825 from the liquid condensed by compressing oil gas. It is the lightest fraction obtained from the distillation of the coal-tar hydrocarbons, but most benzene is now manufactured from suitable petroleum fractions by dehydrogenation (54%) and dealkylation processes. Its principal industrial use is as a starting point for other chemicals, particularly ethylbenzene, cumene, cyclohexane, styrene (45%), phenol (20%), and Nylon (17%) precursors. U.S. production 1979 2-6 B gals. [Pg.55]

There appear to be two stages in the collapse of emulsions flocculation, in which some clustering of emulsion droplets takes place, and coalescence, in which the number of distinct droplets decreases (see Refs. 31-33). Coalescence rates very likely depend primarily on the film-film surface chemical repulsion and on the degree of irreversibility of film desorption, as discussed. However, if emulsions are centrifuged, a compressed polyhedral structure similar to that of foams results [32-34]—see Section XIV-8—and coalescence may now take on mechanisms more related to those operative in the thinning of foams. [Pg.506]

Fig. XV-8. Fluorescence micrographs of crystalline domains of an S-DPPC monolayer containing 2% cholesterol and compressed to the plateau region. [From H. McConnell, D. Keller, and H. Gaub, J. Phys. Chetn., 40, 1717 (I486) (Ref, 49). Copyright 1986, American Chemical Society.]... Fig. XV-8. Fluorescence micrographs of crystalline domains of an S-DPPC monolayer containing 2% cholesterol and compressed to the plateau region. [From H. McConnell, D. Keller, and H. Gaub, J. Phys. Chetn., 40, 1717 (I486) (Ref, 49). Copyright 1986, American Chemical Society.]...
Fluctuations of observables from their average values, unless the observables are constants of motion, are especially important, since they are related to the response fiinctions of the system. For example, the constant volume specific heat of a fluid is a response function related to the fluctuations in the energy of a system at constant N, V and T, where A is the number of particles in a volume V at temperature T. Similarly, fluctuations in the number density (p = N/V) of an open system at constant p, V and T, where p is the chemical potential, are related to the isothemial compressibility iCp which is another response fiinction. Temperature-dependent fluctuations characterize the dynamic equilibrium of themiodynamic systems, in contrast to the equilibrium of purely mechanical bodies in which fluctuations are absent. [Pg.437]

The grand canonical ensemble is a collection of open systems of given chemical potential p, volume V and temperature T, in which the number of particles or the density in each system can fluctuate. It leads to an important expression for the compressibility Kj, of a one-component fluid ... [Pg.475]

Instead of concentrating on the diffiisioii limit of reaction rates in liquid solution, it can be histnictive to consider die dependence of bimolecular rate coefficients of elementary chemical reactions on pressure over a wide solvent density range covering gas and liquid phase alike. Particularly amenable to such studies are atom recombination reactions whose rate coefficients can be easily hivestigated over a wide range of physical conditions from the dilute-gas phase to compressed liquid solution [3, 4]. [Pg.845]

In 1986, David Weininger created the SMILES Simplified Molecular Input Line Entry System) notation at the US Environmental Research Laboratory, USEPA, Duluth, MN, for chemical data processing. The chemical structure information is highly compressed and simplified in this notation. The flexible, easy to learn language describes chemical structures as a line notation [20, 21]. The SMILES language has found widespread distribution as a universal chemical nomenclature... [Pg.26]

Hash codes of molecules which are already pre-computed are suitable for use in fiill structure searches in database applications. The compression of the code of a chemical structure into only one number also makes it possible to compute in advance the transformation results for a whole catalog. The files can be stored and kept complete in the core memory during execution of the program, so that a search can be accomplished within seconds. [Pg.75]

Most of the molecules we shall be interested in are polyatomic. In polyatomic molecules, each atom is held in place by one or more chemical bonds. Each chemical bond may be modeled as a harmonic oscillator in a space defined by its potential energy as a function of the degree of stretching or compression of the bond along its axis (Fig. 4-3). The potential energy function V = kx j2 from Eq. (4-8), or W = ki/2) ri — riof in temis of internal coordinates, is a parabola open upward in the V vs. r plane, where r replaces x as the extension of the rth chemical bond. The force constant ki and the equilibrium bond distance riQ, unique to each chemical bond, are typical force field parameters. Because there are many bonds, the potential energy-bond axis space is a many-dimensional space. [Pg.97]

The incorporation of the new material without any increase in the overall length of the book has been achieved in part by extensive re-writing, with the compression of earlier material, and in part by restricting the scope to the physical adsorption of gases (apart from a section on mercury porosimetry). The topics of chemisorption and adsorption from solution, both of which were dealt with in some detail in the first edition, have been omitted chemisorption processes are obviously dependent on the chemical nature of the surface and therefore cannot be relied upon for the determination of the total surface area and methods based on adsorption from solution have not been developed, as was once hoped, into routine procedures for surface area determination. Likewise omitted, on grounds of... [Pg.290]

Aerosol technology may be defined as involving the development, preparation, manufacture, and testing of products that depend on the power of a hquefied or compressed gas to expel the contents from a container. This definition can be extended to iaclude the physical, chemical, and toxicological properties of both the finished aerosol system and the propellants. [Pg.344]

As a tme thermoplastic, FEP copolymer can be melt-processed by extmsion and compression, injection, and blow molding. Films can be heat-bonded and sealed, vacuum-formed, and laminated to various substrates. Chemical inertness and corrosion resistance make FEP highly suitable for chemical services its dielectric and insulating properties favor it for electrical and electronic service and its low frictional properties, mechanical toughness, thermal stabiUty, and nonstick quaUty make it highly suitable for bearings and seals, high temperature components, and nonstick surfaces. [Pg.358]

Eoamable compositions in which the pressure within the cells is increased relative to that of the surroundings have generally been called expandable formulations. Both chemical and physical processes are used to stabilize plastic foams from expandable formulations. There is no single name for the group of cellular plastics produced by the decompression processes. The various operations used to make cellular plastics by this principle are extmsion, injection mol ding, and compression molding. Either physical or chemical methods may be used to stabilize products of the decompression process. [Pg.404]

Knock is caused by unwanted chemical reactions in the combustion chamber. These reactions are a function of the specific chemical species which make up the fuel and the environmental conditions to which the fuel is subjected during the compression and power stroke in the engine. Therefore, both the chemical makeup of the fuel and the engine design parameters must be considered when trying to understand knock. [Pg.179]


See other pages where Chemical Compression is mentioned: [Pg.197]    [Pg.163]    [Pg.126]    [Pg.398]    [Pg.197]    [Pg.163]    [Pg.126]    [Pg.398]    [Pg.71]    [Pg.1960]    [Pg.1969]    [Pg.2751]    [Pg.2771]    [Pg.41]    [Pg.73]    [Pg.207]    [Pg.255]    [Pg.5]    [Pg.5]    [Pg.169]    [Pg.269]    [Pg.2]    [Pg.130]    [Pg.377]    [Pg.413]    [Pg.416]    [Pg.417]    [Pg.179]    [Pg.312]    [Pg.323]    [Pg.33]   
See also in sourсe #XX -- [ Pg.31 , Pg.43 ]




SEARCH



Chemical Compressed

Chemical Compressed

Chemical hazards compressed gases

Chemical resistance under compressive loading

Chemicals compressed gases

Compression Chemical Reactor

© 2024 chempedia.info