Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Chiral separations

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

S. Abuja, Chiral Separations hy hplc, ACS Symposium Series, 471, American Chemical Society, Washiagton, D.C., 1991. [Pg.254]

An interesting and practical example of the use of thermodynamic analysis is to explain and predict certain features that arise in the application of chromatography to chiral separations. The separation of enantiomers is achieved by making one or both phases chirally active so that different enantiomers will interact slightly differently with the one or both phases. In practice, it is usual to make the stationary phase comprise one specific isomer so that it offers specific selectivity to one enantiomer of the chiral solute pair. The basis of the selectivity is thought to be spatial, in that one enantiomer can approach the stationary phase closer than the other. If there is no chiral selectivity in the stationary phase, both enantiomers (being chemically identical) will coelute and will provide identical log(Vr ) against 1/T curve. If, however, one... [Pg.80]

E. Erancotte, Chromatography as a separation tool for the preparative resolution of racemic compounds in Chiral separations, applications and technology, S. Ahuja (Ed.), American Chemical Society, Washington (1997) Chapter 10. [Pg.19]

Abuja, S. Chiral Separations Applications and Technology American Chemical Society Washington D.C., 1997. [Pg.91]

Brice, L. J., Pirkle, W. H., Chiral separations Applications and Technology, Ahuja, Satinder (eds.) American Chemical Society, Washington D.C., 1997... [Pg.148]

Erancotte E. (1996) Chromatography as a Separation Tool for the Preparative Resolution of Racemic Compounds, in Chiral Separations. Applications and Technology, Ahuja S. (ed.), American Chemical Society, p. 271-308. [Pg.250]

Ahuja, S., Chiral Separations by Liquid Chromatography, American Chemical Society, Washington, D.C, 1991. [Pg.423]

Anions and uncharged analytes tend to spend more time in the buffered solution and as a result their movement relates to this. While these are useful generalizations, various factors contribute to the migration order of the analytes. These include the anionic or cationic nature of the surfactant, the influence of electroendosmosis, the properties of the buffer, the contributions of electrostatic versus hydrophobic interactions and the electrophoretic mobility of the native analyte. In addition, organic modifiers, e.g. methanol, acetonitrile and tetrahydrofuran are used to enhance separations and these increase the affinity of the more hydrophobic analytes for the liquid rather than the micellar phase. The effect of chirality of the analyte on its interaction with the micelles is utilized to separate enantiomers that either are already present in a sample or have been chemically produced. Such pre-capillary derivatization has been used to produce chiral amino acids for capillary electrophoresis. An alternative approach to chiral separations is the incorporation of additives such as cyclodextrins in the buffer solution. [Pg.146]

It is evident that the chromatographic term is the only source for enantioselecti vity because the retention factors may differ for the distinct enantiomers, while electrophoretic mobilities are identical for enantiomeric species. In other words, electrophoretic mobilities, like Veo, are nonselective contributions in view of generating chiral separations, but may positively contribute to the selectivity between distinct compounds (such as, for example, chemical impurities) but also of diastereomeric species. [Pg.90]

CE has been applied extensively for the separation of chiral compounds in chemical and pharmaceutical analysis.First chiral separations were reported by Gozel et al. who separated the enantiomers of some dansylated amino acids by using diastereomeric complex formation with Cu " -aspartame. Later, Tran et al. demonstrated that such a separation was also possible by derivatization of amino acids with L-Marfey s reagent. Nishi et al. were able to separate some chiral pharmaceutical compounds by using bile salts as chiral selectors and as micellar surfactants. However, it was not until Fanali first showed the utilization of cyclodextrins as chiral selectors that a boom in the number of applications was noted. Cyclodextrins are added to the buffer electrolyte and a chiral recognition may... [Pg.37]

Based on the theory, the separation of enantiomers requires a chiral additive to the CE separation buffer, while diastereomers can also be separated without the chiral selector. The majority of chiral CE separations are based on simple or chemically modified cyclodextrins. However, also other additives such as chiral crown ethers, linear oligo- and polysaccharides, macrocyclic antibiotics, chiral calixarenes, chiral ion-pairing agents, and chiral surfactants can be used. Eew non-chiral separation examples for the separation of diastereomers can be found. [Pg.110]

Additives are often used to increase selectivity. They are paramount in chiral separations, but they are also frequently used in non-chiral separations, e.g., cyclodextrins (CDs). In our lab, BGEs with and without a cyclodextrin are part of our generic protocol. Figure 8 demonstrates that although one can more or less predict interaction with the additive from the chemical structures, it is still difficult to predict separation.Batch-to-batch variability and variability between suppliers can be a problem of (chiral) additives and a check of different batches has to be part of the robustness test (e.g., reference 56). If the additive is charged and has one or more pK s around the pH of the BGE, extra care should be taken to control the pH. Alternatively, better robustness might be obtained with another uncharged additive, even if this results in lower resolution. [Pg.137]

The primary advantage of CD complexation is to stabilize and protect sensitive host molecules, such as flavors, odors, or pharmaceuticals. CDs sharply reduce the volatility, chemical, thermal and photo reactivity of guest moleciiles. More recently, CDs have been used for separation of components in solution. For example, CDs can remove reactive components from fhiit juices to prevent oxidation or eUminate bitterness. Attachment of CDs to chromatographic supports provides chiral separation, selective component removal and modified chemical reactivity. A number of modified and pol3nnerized CD materials have gained acceptance as separation media (9). [Pg.373]

Since dorzolamide possesses two chiral centers, an indirect chiral separation has been developed [18]. The procedure employs the chemical derivatization of the secondary amino group of the inhibitor, formation of diastereomeric urea derivatives (each with three chiral centers in the molecule), and their separation under non-ehiral HPLC conditions. Using... [Pg.310]

Programmed temperature (120 -200°C) chiral separation on a 0.25-mm x 25-m open tubular column with a 0.25-nm-thick stationary phase containing 10 wt% fully methylated p-cyclodextrin chemically bonded to dimethyl polysiloxane. [From W. Vetter and W. Jun, Elucidation of a Polychlorinated Bipyrrole Structure Using Enantioselective GC," Anal. Chem. 3002, 74,4287.]... [Pg.533]


See other pages where Chemical Chiral separations is mentioned: [Pg.62]    [Pg.126]    [Pg.96]    [Pg.101]    [Pg.204]    [Pg.207]    [Pg.428]    [Pg.109]    [Pg.114]    [Pg.136]    [Pg.216]    [Pg.219]    [Pg.56]    [Pg.309]    [Pg.68]    [Pg.364]    [Pg.690]    [Pg.136]    [Pg.87]    [Pg.462]    [Pg.70]    [Pg.506]    [Pg.238]    [Pg.518]    [Pg.219]    [Pg.361]   
See also in sourсe #XX -- [ Pg.837 , Pg.883 ]




SEARCH



Chiral separations

Chiral separations chirality

Chiralic separation

Chirality chemical

Separators, chemical

© 2024 chempedia.info