Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge density, definition

A Perturbation Theory is developed for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation. It is shown by this development that the first order correction for the energy and the charge density of the system is zero. The expression for the second order correction for the energy greatly simplifies because of the special property of the zero order solution. It is pointed out that the development of the higher order approximation involves only calculations based on a definite one-body problem. [Pg.199]

Conventional implementations of MaxEnt method for charge density studies do not allow easy access to deformation maps a possible approach involves running a MaxEnt calculation on a set of data computed from a superposition of spherical atoms, and subtracting this map from qME [44], Recourse to a two-channel formalism, that redistributes positive- and negative-density scatterers, fitting a set of difference Fourier coefficients, has also been made [18], but there is no consensus on what the definition of entropy should be in a two-channel situation [18, 36,41] moreover, the shapes and number of positive and negative scatterers may need to differ in a way which is difficult to specify. [Pg.18]

Ionic liquids are characterised by the following three definition criteria. They consist entirely out of ions, they have melting points below 100 °C and they exhibit no detectable vapour pressure below the temperature of their thermal decomposition. As a consequence of these properties most ions forming ionic liquids display low charge densities resulting in low intermolecular interaction. Figure 7.1 displays some of the most common ions used so far for the formation of ionic liquids. [Pg.183]

Electrochemical interfaces are sometimes referred to as electrified interfaces, meaning that potential differences, charge densities, dipole moments, and electric currents occur. It is obviously important to have a precise definition of the electrostatic potential of a phase. There are two different concepts. The outer or Volta potential ij)a of the phase a is the work required to bring a unit point charge from infinity to a point just outside the surface of the phase. By just outside we mean a position very close to the surface, but so fax away that the image interaction with the phase can be ignored in practice, that means a distance of about 10 5 — 10 3 cm from the surface. Obviously, the outer potential i/ a U a measurable quantity. [Pg.11]

At the electrocapillary maximum, the charge density, a, is zero (point of zero charge) (Fig. A.4.5c). By definition, the differential capacity of the double layer, Cd, is equal (Second Lippmann Equation). [Pg.150]

Use of Equation (1) in numerical work requires a means of generating x(r, r i(o) as well as the average charge density. Direct variational methods are not applicable to the expression for E itself, due to use of the virial theorem. However, both pc(r) and x(r, r ico) (39-42, 109-112) are computable with density-functional methods, thus permitting individual computations of E from Eq. (1) and investigations of the effects of various approximations for x(r, r ico). Within coupled-cluster theory, x(r, r ico) can be generated directly (53) from the definition in Eq. (3) then Eq. (1) yields the coupled-cluster energy in a new form, as an expectation value. [Pg.179]

The quantity (symbolized by p) of electrical charge per unit volume, equal to Q/V, with SI units of coulombs per cubic meter. More technically, this definition refers to the volume charge density. See Surface Charge Density... [Pg.127]

There are some very special characteristics that must be considered as regards colloidal particle behavior size and shape, surface area, and surface charge density. The Brownian motion of particles is a much-studied field. The fractal nature of surface roughness has recently been shown to be of importance (Birdi, 1993). Recent applications have been reported where nanocolloids have been employed. Therefore, some terms are needed to be defined at this stage. The definitions generally employed are as follows. Surface is a term used when one considers the dividing phase between... [Pg.6]

In analogy to the definition of the total charge density, we define the total structure factor Ftotal(H), which includes both the nuclei and the electrons, and is, excluding thermal effects, given by... [Pg.169]

Local density of states (continued) definition 119 s-wave-tip model, and 29 Sommerfeld metal 93 STM corrugation, and 142 total charge density, and 120 Local modification of sample wavefunctions 195 Local-density approximation 114 Logarithmic amplifier 257 Louse 269... [Pg.408]

Both ions appear to desorb from the DPPC bilayer surfaces as they come closer. We cannot infer an association constant for the binding of Mg2+ or Ca2+ to DPPC if we use a definition based on mass action. The apparent binding coefficient as well as surface potential and charge density vary with bilayer separation (I). [Pg.48]

The definition of electric charge density in Eq. (76) agrees with our opinion that 0 in Maxwell s equations represents charge neutrality (see Section HI) the simplest case is 5+ + S = 0. Also note that X/ defined by Eq. (74) is independent of pe thus allowing for the existence of a displacement current in the absence of electric charge, as also discussed in Section HI. [Pg.363]

Having resolved the molecular perception problem and achieved a unique representation of all atoms, bonds, and rings in the molecule, the second major step is the definition of the most useful measure for local similarity of atoms and atomic environment. For the purpose of COSMO/rag, we need to achieve the state that atoms are considered as most similar, if their partial molecular surfaces and surface polarities, i.e., polarization charge densities, are most similar. But since the latter is not known, at least for the new molecule under consideration, we have to ensure that the local geometries and the electronic effects of the surrounding atoms are most similar. Obviously, two similar atoms should at legist be identical with respect to their element and their hybridization. Turning this information into a unique real number, a similarity index of the lowest order (zeroth order) can be defined for each atom from the atom element numbers and... [Pg.185]


See other pages where Charge density, definition is mentioned: [Pg.132]    [Pg.132]    [Pg.132]    [Pg.132]    [Pg.211]    [Pg.252]    [Pg.685]    [Pg.102]    [Pg.65]    [Pg.136]    [Pg.212]    [Pg.232]    [Pg.368]    [Pg.13]    [Pg.69]    [Pg.221]    [Pg.368]    [Pg.169]    [Pg.87]    [Pg.130]    [Pg.178]    [Pg.58]    [Pg.190]    [Pg.244]    [Pg.511]    [Pg.190]    [Pg.222]    [Pg.761]    [Pg.363]    [Pg.81]    [Pg.27]    [Pg.29]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Charge densities Mulliken definition

Definitions, charges

Density definition

© 2024 chempedia.info