Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization of a Bio- catalyst

Enzymes are a class of macromolecules with the ability both to bind small molecules and to effect reaction. Stabilizing forces such as hydrophobic effects only slightly dominate destabilizing forces such as Coulombic forces of equal polarity thus the Gibbs free enthalpy of formation of proteins, AGformation, is only weakly negative. [Pg.19]

In an enzyme reaction, initially free enzyme E and free substrate S in their respective ground states initially combine reversibly to an enzyme-substrate (ES) complex. The ES complex passes through a transition state, AGj, on its way to the enzyme-product (EP) complex and then on to the ground state of free enzyme E and free product P. From the formulation of the reaction sequence, a rate law, properly containing only observables in terms of concentrations, can be derived. In enzyme catalysis, the first rate law was written in 1913 by Michaelis and Menten therefore, the corresponding kinetics is named the Michaelis-Menten mechanism. The rate law according to Michaelis-Menten features saturation kinetics with respect to substrate (zero order at high, first order at low substrate concentration) and is first order with respect to enzyme. [Pg.19]

Important milestones in the rationalization of enzyme catalysis were the lock-and-key concept (Fischer, 1894), Pauling s postulate (1944) and induced fit (Koshland, 1958). Pauling s postulate claims that enzymes derive their catalytic power from transition-state stabilization the postulate can be derived from transition state theory and the idea of a thermodynamic cycle. The Kurz equation, kaJkunat Ks/Kt, is regarded as the mathematical form of Pauling s postulate and states that transition states in the case of successful catalysis must bind much more tightly to the enzyme than ground states. Consequences of the Kurz equation include the concepts of effective concentration for intramolecular reactions, coopera-tivity of numerous interactions between enzyme side chains and substrate molecules, and diffusional control as the upper bound for an enzymatic rate. [Pg.19]

Biocatalysis. Andreas S. Bommarius and Bettina R. Riebel Copyright 2004 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim ISBN 3-527-30344-8 [Pg.19]

Every (bio)catalyst can be characterized by the three basic dimensions of merit -activity, selectivity and stability - as characterized by turnover frequency (tof) (= l/kcat), enantiomeric ratio (E value) or purity (e.e.), and melting point (Tm) or deactivation rate constant (kd). The dimensions of merit important for determining, evaluating, or optimizing a process are (i) product yield, (ii) (bio)catalyst productivity, (iii) (bio)catalyst stability, and (iv) reactor productivity. The pertinent quantities are turnover number (TON) (= [S]/[E]) for (ii), total turnover number (TTN) (= mole product/mole catalyst) for (iii) and space-time yield [kg (L d) 11 for iv). Threshold values for good biocatalyst performance are kcat 1 s 1, E 100 or e.e. 99%, TTN 104-105, and s.t.y. 0.1 kg (L d).  [Pg.20]


The productivity of a (bio)catalyst is characterized by the dimensionless turnover number (TON). It denotes the number of substrate molecules converted per number of catalyst molecules used within a given time span. TONs for enzymes typically range from 10 to 10 (Table 1.1) [126]. [Pg.25]

Hybrid catalysts consisting of a zeolite (ZSM-5 or Beta) and bentonite as a binder were prepared and characterized by XRD, pyridine FTIR and nitrogen adsorption. The hybrid catalysts exhibited similar properties as the combined starting materials. Catalytic pyrolysis over pure ZSM-5 and Beta as well as hybrid catalysts has been successfully carried out in a dual-fluidized bed reactor. De-oxygenation of the produced bio-oil over the different zeolitic materials was increased compared to non-catalytic pyrolysis over quartz sand. [Pg.315]

The produced bio oil was analyzed by GC-MS and Karl Fischer titration. The surface area of the spent catalyst was also measured. Regeneration of the spent catalyst was performed at 450°C for 2h in a muffle oven in the presence of air. The regenerated catalysts were characterized in a similar fashion as the fresh ones. [Pg.317]

Figure 9.8 (a) Schematic representation of oxidized to H. (b) Structure of the the structure and reactivity of the bio-inspired membrane-electrode assembly used for the H2-evolving nickel catalyst grafted on a carbon electrocatalytic characterization of the nanotube [51]. Electrons are exchanged Ni-functionalized CNTs under conditions... [Pg.305]

Cellulose is a natural biopolymer, which is biodegradable, environmentally safe, widely abundant, inexpensive, and easy to handle [57]. Cellulose and its derivatives are widely used in chemical and bio-chemical applications and also as supports for the synthesis of organic molecules [58]. Interestingly, the cellulose fibers also act as a nanoreactor for the stabilization of metal nanoparticles [59]. However, its use as a support for catalytic applications is not well explored. Recently, Choplin and coworkers reported cellulose as the support for water soluble Pd(OAc>2/5 TPPTS system in the Trost-Tsuji allylic alkylation reaction [60]. To corroborate the above concept in the cross coupling of aryl halides and boronic acids, we reported A-arylation of imidazoles with aryl halides using a cellulose-supported Cu(0) catalyst (CELL-Cu(O) [61]. The prepared catalyst was well characterized using various instrumental techniques. For example, the X-ray diffraction pattern of CELL-Cu(O) catalyst clearly indicates the presence of Cu (111) and Cu (200) phases which are attributed to Cu(0) [46]. Further, the high resolution XPS narrow scan spectrum of the fresh CELL-Cu(O) catalyst shows a Cu 2p3/2 peak at 932.72 ev, which is attributed to Cu (0) [22]. [Pg.145]


See other pages where Characterization of a Bio- catalyst is mentioned: [Pg.19]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.42]    [Pg.19]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.42]    [Pg.707]    [Pg.441]    [Pg.71]    [Pg.675]    [Pg.13]    [Pg.182]    [Pg.301]    [Pg.113]    [Pg.369]    [Pg.284]    [Pg.414]    [Pg.1422]    [Pg.548]    [Pg.866]    [Pg.421]    [Pg.253]   


SEARCH



Catalyst characterization

© 2024 chempedia.info