Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain propagation monomer reactivities

The and e values of the aHyl group in DAP have been estimated as 0.029 and 0.04, respectively, suggesting that DAP acts as a fairly typical unconjugated, bifunctional monomer (42). Cyclization affects copolymerization, since cyclized radicals are less reactive in chain propagation. Thus DAP is less reactive in copolymerization than DAIP or DATP where cyclization is stericaHy hindered. Particular comonomers affect cyclization, chain transfer, and residual unsaturation in the copolymer products. DiaHyl tetrachloro- and tetrabromophthalates are low in reactivity. [Pg.85]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

Any understanding of the kinetics of copolymerization and the structure of copolymers requires a knowledge of the dependence of the initiation, propagation and termination reactions on the chain composition, the nature of the monomers and radicals, and the polymerization medium. This section is principally concerned with propagation and the effects of monomer reactivity on composition and monomer sequence distribution. The influence of solvent and complcxing agents on copolymerization is dealt with in more detail in Section 8.3.1. [Pg.336]

During this, the electrons of the partial X—Z multiple bond are used. Experiments show that the ester can be further active in the polymerization. Its reactivity, however, is reduced in comparison with ion pairs. From a mechanistical point of view, the chain propagation should proceed in the manner of a SN2 reaction, that is with the monomer as nucleophile and the ester as substrate. With the assistance of quantum chemical calculations using the CNDO/2 method, the differences between covalent species and free ions should be examined. The following contains the three types of anions used ... [Pg.212]

In the framework of this ultimate model [33] there are m2 constants of the rate of the chain propagation kap describing the addition of monomer to the radical Ra whose reactivity is controlled solely by the type a of its terminal unit. Elementary reactions of chain termination due to chemical interaction of radicals Ra and R is characterized by m2 kinetic parameters k f . The stochastic process describing macromolecules, formed at any moment in time t, is a Markov chain with transition matrix whose elements are expressed through the concentrations Ra and Ma of radicals and monomers at this particular moment in the following way [1,34] ... [Pg.176]

This is the simplest of the models where violation of the Flory principle is permitted. The assumption behind this model stipulates that the reactivity of a polymer radical is predetermined by the type of bothjts ultimate and penultimate units [23]. Here, the pairs of terminal units MaM act, along with monomers M, as kinetically independent elements, so that there are m3 constants of the rate of elementary reactions of chain propagation ka ]r The stochastic process of conventional movement along macromolecules formed at fixed x will be Markovian, provided that monomeric units are differentiated by the type of preceding unit. In this case the number of transient states Sa of the extended Markov chain is m2 in accordance with the number of pairs of monomeric units. No special problems presents writing down the elements of the matrix of the transitions Q of such a chain [ 1,10,34,39] and deriving by means of the mathematical apparatus of the Markov chains the expressions for the instantaneous statistical characteristics of copolymers. By way of illustration this matrix will be presented for the case of binary copolymerization ... [Pg.180]

The kernel (26) and the absorbing probability (27) are controlled by the rate constants of the elementary reactions of chain propagation kap and monomer concentrations Ma(x) at the moment r. These latter are obtainable by solving the set of kinetic equations describing in terms of the ideal kinetic model the alteration with time of concentrations of monomers Ma and reactive centers Ra. [Pg.186]

Strongly electrophilic or nucleophilic monomers will polymerize exclusively by anionic or cationic mechanisms. However, monomers that are neither strongly electrophilic nor nucleophilic generally polymerize by ionic and free radical processes. The contrast between anionic, cationic, and free radical methods of addition copolymerization is clearly illustrated by the results of copolymerization utilizing the three modes of initiation (Figure 7.1). Such results illustrate the variations of reactivities and copolymer composition that are possible from employing the different initiation modes. The free radical tie-line resides near the middle since free radical polymerizations are less dependent on the electronic nature of the comonomers relative to the ionic modes of chain propagation. [Pg.211]

When = 2 = 1, the two monomers show equal reactivities toward both propagating species. The copolymer composition is the same as the comonomer feed with a random placement of the two monomers along the copolymer chain. Such behavior is referred to as random or Bemoullian. For the case where the two monomer reactivity ratios are different, that is, > 1 and r2 < 1 or U < 1 and r2 > 1, one of the monomers is more reactive than the other toward both propagating species. The copolymer will contain a larger proportion of the more reactive monomer in random placement. [Pg.472]

The estimation of the reactivities of the free ions and ion pairs directly in the polymerization reaction of phenylglycidyl ether under the action of dimethylbenzylamine in the presence of isopropyl alcohol at 343 K 15l) gave k = 5.6 1 mol-1 s-1 and k = 0.71 mol1 s 1. The values of the bimolecular rate constants are given here considering the fact that the activated molecules of the monomer (its complexes with alcohol) take part in the chain propagation reaction. [Pg.155]

The co-monomers such as vinyl acetate, acrylate esters, or carbon monoxide are fed together with ethylene, or introduced by liquid pumps, into the suction of the secondary compressor. The concentration in the feed of the co-monomer which is required to achieve a certain level of the co-monomer in the resulting polymer depends on the reactivity ratios, ri and r2, which are the ratios of rate constants of chain-propagation reactions [5]. The values for the co-monomers used in the high-pressure process are presented in Table 5.1-3. In the case of vinyl acetate, both reactivity ratios are identical and therefore the composition of the copolymer is the same as that of the feed. The concentration of vinyl acetate, for example, in... [Pg.245]

While this review discloses the kinetic and stereochemical features of soluble Ziegler-Natta catalysts, we have little information on the structure of the active center. The steric environments of active centers must be very important in determining the monomer reactivity, regiospecificity and stereospecificity of soluble catalyst. The influence of ligands such as the aluminum components on the rates of chain propagation and chain-terminating steps should be correlated to the electronic structure of... [Pg.244]

A clear consensus47 156>166) has emerged which indicates that various extents of ether complexation with active centers can reduce their reactivity in the chain propagation event. If cation-monomer coordination is important, the presence of ether in the coordination sphere might be expected to lead to less monomer interaction with a subsequent reduction in polymerization reactivity. Clearly, there is a need for further work, experimental and theoretical, on this topic. [Pg.35]

The R,R and S,S diastereotopic faces of the monomer are two times more reactive than the R,S and. S , R faces. Even in the chain propagation steps, an analogous diastereoselectivity is observed [2],... [Pg.136]

The simplest way to catalyze the polymerization reaction that leads to an addition polymer is to add a source of a free radical to the monomer. The term free radical is used to describe a family of very reactive, short-lived components of a reaction that contain one or more unpaired electrons. In the presence of a free radical, addition polymers form by a chain-reaction mechanism that contains chain-initiation, chain-propagation, and chain- termination steps. [Pg.196]

In considering the copolymerization of substituted p-xylylenes, such as X and XI, an important question is whether the growing polymer chain XII (which has just added a unit of monomer X) shows any preference for reacting with X or XI. The chain-propagating step involves addition of a radical to a highly reactive monomer to form a covalent bond and a... [Pg.664]

Radical ions are, in the main, not very important as active centres of polymerizations. In media suitable for the existence both of radicals and of ions, the latter are usually more reactive. Moreover, the radicals decay by combination their contribution to chain propagation is usually negligible. Radical ions are more important as precursors of active centres, as intermediates generated from initiators and monomers through their radical ends they can combine (disproportionate) yielding active centres, frequently diions. Studies of radical ion behaviour contribute to our knowledge of the processes connected with electron transfer from molecule to molecule. These oxidation-reduction processes are very important in macromolecular chemistry. [Pg.199]

While the majority of SBC products possess discrete styrene and diene blocks, some discussion of the copolymerization of styrene and diene monomers is warranted. While the rate of homopolymerization of styrene in hydrocarbon solvents is known to be substantially faster that of butadiene, when a mixture of butadiene and styrene is polymerized the butadiene is consumed first [21]. Once the cross-propagation rates were determined (k and in Figure 21.1) the cause of this counterintuitive result became apparent [22]. The rate of addition of butadiene to a growing polystyryllithium chain (ksd) was found to be fairly fast, faster in fact than the rate of addition of another styrene monomer. On the other hand, the rate of addition of styrene to a growing polybutadienyllithium chain (k s) was found to be rather slow, comparable to the rate of butadiene homopolymerization. Thus, until the concentration of butadiene becomes low, whenever a chain adds styrene it is converted back to a butadienyllithium chain before it can add more styrene. Similar results were found for the copolymerization of styrene and isoprene. Monomer reactivity ratios have been measured under a variety of conditions [23]. Values for rs are typically <0.2, while values for dienes (rd) typically range from 7 to 15. Since... [Pg.468]

The essence of the energetic studies on TS and 4-BCMU is contained in Fig. 9. In TS formation of the chain initiating species -- a dimer — requires an energy of 1.0 eV. It can be supplied thermally or optically via monomer excitation. In the former case it is this chain initiation reaction that controls the thermal reactivity and its temperature-dependence. Chain initiation can also be produced optically at a yield of order 10 per absorbed UV-quantum. In this case it is chain propagation that determines the temperature dependence of the polymerization yield. However, the activation energy E" need not be and in general is not identical with the energy... [Pg.16]

Chain propagation by addition of molecules starts with the reactive dimer molecules DR2 and AC2. Below about 80 K addition of molecules is possible photochemically only upon excitation of the perturbed monomer molecules adjacent to the reactive chain ends of the intermediates. The photoaddition reactions are defined by the reaction Eq.(lOa-c). The generation and decay rates G = d[RO]/dtandD = —d[RO]/ dt of the individual reactive oligomer molecules RO = DR, AC, DC of lengths n are given by ... [Pg.79]

At temperature above 80 K thermal reactions are observed. The chain propagation by thermal addition (tha) of monomers to the reactive intermediates is described... [Pg.79]

Growth of the polymer chain (propagation) occurs through continuous addition of monomer to the reactive chain end. Because polymerization... [Pg.572]

Only one kinetic study exists on initiation of methacrylate polymerization by a sodium compound. The initiator was the disodium oligomer ( tetramer ) of a-methylstyrene and polymerization was investigated at 25°C in toluene in presence of 0.05—0.2 mole fraction of tetrahydrofuran [181]. An internal first order disappearance of monomer was observed, the first order coefficient being directly proportional to active chain and tetrahydrofuran concentrations. The rate coefficients evaluated, e.g. fep = 3.1—13 X 10 1 mole sec at various tetrahydrofuran concentrations, are much lower than those for lithium initiators. They were, however, evaluated using a methyl iodide titration technique to estimate the active chain concentration. In view of the reactivity of tritiated acetic acid with many short chains which are clearly not active in chain propagation, there must be suspicion of similar behaviour with methyl iodide. If this happens, the active chain concentration would be over-estimated and the derived fep value would be too low. Unfortunately no molecular weights of the precipitable polymer were determined, so that it is impossible to check on active chain concentration using this alternative method. [Pg.47]


See other pages where Chain propagation monomer reactivities is mentioned: [Pg.446]    [Pg.166]    [Pg.5]    [Pg.178]    [Pg.185]    [Pg.169]    [Pg.6]    [Pg.331]    [Pg.479]    [Pg.513]    [Pg.112]    [Pg.136]    [Pg.38]    [Pg.53]    [Pg.708]    [Pg.395]    [Pg.640]    [Pg.2684]    [Pg.70]    [Pg.22]    [Pg.68]    [Pg.54]    [Pg.148]    [Pg.273]    [Pg.949]    [Pg.141]    [Pg.5]   
See also in sourсe #XX -- [ Pg.187 , Pg.188 , Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.196 , Pg.197 , Pg.198 ]




SEARCH



Chain propagating

Chain propagation

Chain propagator

Monomer reactivity

Reactive Chains

Reactive monomers

© 2024 chempedia.info