Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain achiral

The achiral triene chain of (a//-rrans-)-3-demethyl-famesic ester as well as its (6-cis-)-isoiner cyclize in the presence of acids to give the decalol derivative with four chirai centres whose relative configuration is well defined (P.A. Stadler, 1957 A. Escherunoser, 1959 W.S. Johnson, 1968, 1976). A monocyclic diene is formed as an intermediate (G. Stork, 1955). With more complicated 1,5-polyenes, such as squalene, oily mixtures of various cycliz-ation products are obtained. The 18,19-glycol of squalene 2,3-oxide, however, cyclized in modest yield with picric acid catalysis to give a complex tetracyclic natural product with nine chiral centres. Picric acid acts as a protic acid of medium strength whose conjugated base is non-nucleophilic. Such acids activate oxygen functions selectively (K.B. Sharpless, 1970). [Pg.91]

Antithesis of Achiral and Chiral Open-Chain Target Molecnles... [Pg.193]

Recent syntheses of steroids apply efficient strategies in which open-chain or monocyclic educts with appropiate side-chains are stereoselectively cyclized in one step to a tri- or tetracyclic steroid precursor. These procedures mimic the biochemical synthesis scheme where acyclic, achiral squalene is first oxidized to a 2,3-epoxide containing one chiral carbon atom and then enzymatically cyclized to lanostetol with no less than seven asymmetric centres (W.S. Johnson, 1%8, 1976 E.E. van Tamden, 1968). [Pg.279]

Use connective transforms to convert an achiral chain segment of nCL centers into a conformationally fixed ring containing CL stereocenters (Section 5.7). [Pg.56]

Consonant with the present interest in chiral synthesis, two additional contributions can be cited. Sih al utilized a combined microbiological and organic chemical sequence in which key chirality establishing steps include the conversion of to chiral, but unstable, 18 by enzymic reduction using the fungus Diplodascus uninucleatus. Lower side-chain synthon was prepared by reduction of achiral with Pencillium decumbens. [Pg.6]

Stereochemical constraints in cyclic sulfones and sulfoxides impart increased weight to strain and conformational factors in the generation of carbanions and their stability, causing distinct differences between the behavior of cyclic and open-chain systems233, due primarily to the prevention of extensive rotation about the C —S bond, which is the major way that achiral carbanions racemize. Study of the a-H/D exchange rate fce and the racemization rate ka may provide information concerning the acidity-stereochemical relationships in optically active cyclic sulfone and sulfoxide systems. [Pg.443]

Due to the inherent unsymmetric arene substitution pattern the benzannulation reaction creates a plane of chirality in the resulting tricarbonyl chromium complex, and - under achiral conditions - produces a racemic mixture of arene Cr(CO)3 complexes. Since the resolution of planar chiral arene chromium complexes can be rather tedious, diastereoselective benzannulation approaches towards optically pure planar chiral products appear highly attractive. This strategy requires the incorporation of chiral information into the starting materials which may be based on one of three options a stereogenic element can be introduced in the alkyne side chain, in the carbene carbon side chain or - most general and most attractive - in the heteroatom carbene side chain (Scheme 20). [Pg.135]

We note that the bilayer smectic phase which may be formed in main-chain polymers with two odd numbered spacers of different length (Fig. 7), should also be polar even in an achiral system [68]. This bilayer structure belongs to the same polar symmetry group mm2 as the chevron structure depicted in Fig. 17b, and macroscopic polarization might exist in the tilt direction of molecules in the layer. From this point of view, the formation of two-dimensional structure of the type shown in Fig. 7, where the polarization directions in neighbouring areas have opposite signs, is a unique example of a two dimensional antiferroelectric structure. [Pg.232]

Fig. 17a-c. Sketches of the molecular arrangements for the smectic structure with alternating layer-to-layer tilt a conventional and chevron smectic C layering in low molecular mass mesogens b ferroelectric hilayer chevron structures for achiral side-chain polymers c antiferroelectric hilayer chevron structures for achiral side-chain polymers. Arrows indicate the macroscopic polarization in the direction of the molecular tilt... [Pg.233]

Fig. 1.6 A comparison of the CD spectra of oligopeptoids with achiral Npm side chains (1) and with a-chiral, aromatic sidechains of S and R chirality (2 and 6, respectively). Sample concentration was 60 j,M in acetonitrile. Spectra were acquired at room temperature. Npm = (N-[l-phenylmethyljglycine) Nspe= (S)-N-(l -phenylethyl)glycine Nrpe= (R)-N-(l -phenylethyl)glycine... Fig. 1.6 A comparison of the CD spectra of oligopeptoids with achiral Npm side chains (1) and with a-chiral, aromatic sidechains of S and R chirality (2 and 6, respectively). Sample concentration was 60 j,M in acetonitrile. Spectra were acquired at room temperature. Npm = (N-[l-phenylmethyljglycine) Nspe= (S)-N-(l -phenylethyl)glycine Nrpe= (R)-N-(l -phenylethyl)glycine...
Subsequently, these catalysts were evaluated in the enantioselective desymmetri-sation of achiral trienes, and three distinct trends in catalyst selectivity were found. Firstly, catalysts 56a-b with two phenyl moieties on the backbone of the A -heterocycle exhibited higher enantioselectivity than those with a fused cyclohexyl group as the backbone 55a-b. Secondly, mono-ort/io-substituted aryl side chains induced greater enantioselectivity than symmetrical mesityl wing tips. Thirdly, changing the halide ligands from Cl to I" increased the enantioselectivity. As a result, catalyst 56b turned out to be the most effective. For example, 56b in the presence of Nal was able to promote the desymmetrisation of 57 to give chiral dihydrofuran 58 in up to 82% conversion and 90% ee (Scheme 3.3). [Pg.78]

In 2008, Grisi et al. reported three ruthenium complexes 65-67 bearing chiral, symmetrical monodentate NHC ligands with two iV-(S)-phenylethyl side chains [74] (Fig. 3.26). Three different types of backbones were incorporated into the AT-heterocyclic moiety of the ligands. When achiral triene 57 was treated with catalysts 65-67 under identical reaction conditions, a dramatic difference was observed. As expected, the absence of backbone chirality in complex 65 makes it completely inefficient for inducing enantioselectivity in the formation of 58. Similarly, the mismatched chiral backbone framework of complex 66 was not able to promote asymmetric RCM of 57. In contrast, appreciable albeit low selectivity (33% ee) was observed when the backbone possessed anti stereochemistry. [Pg.80]

By studying mixtures of L- and D-LA of varying composition, Spassky et al. have demonstrated that (256) yields PLA containing long isotactic sequences, with a ratio of homo cross propagation of 2.8.796 Hence, an 80/20 L D mixture when polymerized to 70% conversion displayed an optical purity of 87%. Even at the relatively low optical purity of 65/35 L D, isotactic block lengths of >12 repeat units were reported. Achiral (259) converts rac-LA into highly isotactic PLA a Tm of 192 °C indicates that the chains of P(L-LA) and P(D-LA) form a stereocomplex.792 797-799... [Pg.40]

Chain-end controlled isospecificity and syndiospecificity for 1-alkene polymerizations at low temperatures with achiral metallocenes have also been reported.2,163 81131135 The polymerization with these catalysts is highly regio-specific in favor of primary monomer insertion. [Pg.48]

Diastereoisomeric transition states calculated for propene primary insertion in a model of the Ewen achiral metallocenes are shown in Figure 1.20. The two possible diastereomeric transition states correspond to si (Figure 1.20a) and re (Figure 1.20b) insertions of the monomer for the case of a si chain (i.e., a growing chain in which the last monomeric unit has been obtained by a cis addition of a -coordinated monomer molecule) and are suitable for like (isotactic) and unlike (syndiotactic) propagations, respectively.142,143... [Pg.49]

Crystallization of polymers in chiral crystals, even in the case of achiral polymers, is quite frequent and strictly related to the occurrence of helical conformations of the chains. The crystallizable polymer consists of a regular sequence of a chemical repeating unit which can be chiral if it presents an asymmetric center or achiral. On the contrary, helical conformations assumed by the polymer chains in the crystalline state are intrinsically chiral, even though the chemical repeat is achiral. Three possible cases can be distinguished ... [Pg.142]


See other pages where Chain achiral is mentioned: [Pg.1128]    [Pg.1128]    [Pg.331]    [Pg.1084]    [Pg.232]    [Pg.2]    [Pg.13]    [Pg.16]    [Pg.79]    [Pg.376]    [Pg.21]    [Pg.42]    [Pg.175]    [Pg.112]    [Pg.114]    [Pg.118]    [Pg.119]    [Pg.43]    [Pg.132]    [Pg.6]    [Pg.245]    [Pg.75]    [Pg.55]    [Pg.106]    [Pg.111]    [Pg.119]    [Pg.143]    [Pg.216]    [Pg.218]    [Pg.224]    [Pg.226]    [Pg.229]    [Pg.237]    [Pg.240]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Achirality

Antithesis of Achiral and Chiral Open-Chain Target Molecules

© 2024 chempedia.info