Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melting point ceramics

It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications. [Pg.12]

It also has potential use in ceramic and glass formulas, as the oxide has a high melting point and imparts shock resistance and low expansion characteristics to glass. [Pg.74]

Fused Salt Electrolysis. Only light RE metals (La to Nd) can be produced by molten salt electrolysis because these have a relatively low melting point compared to those of medium and heavy RE metals. Deposition of an alloy with another metal, Zn for example, is an alternative. The feed is a mixture of anhydrous RE chlorides and fluorides. The materials from which the electrolysis cell is constmcted are of great importance because of the high reactivity of the rare-earth metals. Molybdenum, tungsten, tantalum, or alternatively iron with ceramic or graphite linings are used as cmcible materials. Carbon is frequently used as an anode material. [Pg.546]

Creep. The phenomenon of creep refers to time-dependent deformation. In practice, at least for most metals and ceramics, the creep behavior becomes important at high temperatures and thus sets a limit on the maximum appHcation temperature. In general, this limit increases with the melting point of a material. An approximate limit can be estimated to He at about half of the Kelvin melting temperature. The basic governing equation of steady-state creep can be written as foUows ... [Pg.203]

In the flux-growth method, crystals of the desired ceramic are precipitated from a melt containing the components of the product phase, often in addition to additives used to suppress the melting point of the flux. These additives remain in solution after crystal growth is complete. Crystals are precipitated onto seeds by slowly cooling the melt or the seed, or occasionally by evaporating volatile components of the melt such as alkaH haHdes, depressing the solubiHty of the product phase. [Pg.338]

Figure 17.1 and Table 17.1 give melting points for metals and ceramics and softening temperatures for polymers. Most metals and ceramics have high melting points and, because of this, they start to creep only at temperatures well above room temperature... [Pg.170]

There are, of course, many more ceramics available than those listed here alumina is available in many densities, silicon carbide in many qualities. As before, the structure-insensitive properties (density, modulus and melting point) depend little on quality -they do not vary by more than 10%. But the structure-sensitive properties (fracture toughness, modulus of rupture and some thermal properties including expansion) are much more variable. For these, it is essential to consult manufacturers data sheets or conduct your own tests. [Pg.166]

Ceramic fibers are used at temperatures up to 1600°C but their melting point can be in excess of 2000°C. [Pg.121]

The sensor usually consists of a coil of wire made from the material that is wound on a former and the whole sealed to prevent oxidization, although a film of the metal deposited on a ceramic substrate can also be used. The resistor is connected in a Wheatstone bridge network (Figure 17.17), using fixed resistors in the other three arms. The instrument connected across the bridge is calibrated directly in terms of temperature. The range is limited by the linearity of the device and the upper temperature, which can be measured, must be well below the melting point of the material. [Pg.243]

Lithium compounds are used in ceramics, lubricants, and medicine. Small daily doses of lithium carbonate are an effective treatment for bipolar (manic-depressive) disorder but scientists still do not fully understand why. Lithium soaps—the lithium salts of long-chain carboxylic acids—are used as thickeners in lubricating greases for high-temperature applications because they have higher melting points than more conventional sodium and potassium soaps. [Pg.710]

We wish to test a new type of ceramic tube to the AljOg tube normally used to fabricate high-pressure sodium lamps in order to eompare lamp qualities and life-time operation. Select a method which would produce the desired results and describe how this would be accomplished. Note that the ceramic tube requires both strength and a high melting point. [Pg.356]

Early tests [37] utilized a cell design similar to that of early MCFC experiments. The assembled cell, machined from graphite blocks, is shown as Fig. 24. The electrodes and current collectors were machined from graphite and dense carbon, respectively. The electrolyte was a mixture of 63% Na2S, 37% Li2S, believed to melt near 850 °C the melting point after several days of operation was below 700 °C, probably because of polysulfide formation. The electrolyte was immobilized in a matrix of MgO, the whole formed by hot-pressing a mixture of electrolyte and ceramic powders. [Pg.227]

A freshly prepared mixture of a fluid or soft binder with a solid filler is generally pliable and can be easily worked and shaped. As the binder solidifies, either because of drying, as when the binder is a cement, firing at high temperature, when the binder is clay, as in ceramics, or cooling down below the melting point, when the binder is bitumen or an alloy,... [Pg.168]

Beryllium oxide, BeO, is used in place of Si02 or A1203 in performance-sensitive ceramic applications. It is distinguished by having the highest melting point (2507°C) combined with excellent thermal conductivity and poor electrical conductivity. [Pg.110]


See other pages where Melting point ceramics is mentioned: [Pg.321]    [Pg.322]    [Pg.323]    [Pg.209]    [Pg.137]    [Pg.80]    [Pg.251]    [Pg.251]    [Pg.56]    [Pg.257]    [Pg.94]    [Pg.479]    [Pg.75]    [Pg.317]    [Pg.338]    [Pg.39]    [Pg.171]    [Pg.206]    [Pg.161]    [Pg.175]    [Pg.183]    [Pg.194]    [Pg.197]    [Pg.220]    [Pg.238]    [Pg.370]    [Pg.367]    [Pg.416]    [Pg.919]    [Pg.111]    [Pg.327]    [Pg.419]    [Pg.420]    [Pg.279]    [Pg.37]    [Pg.198]    [Pg.280]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Melting ceramic

© 2024 chempedia.info