Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ceramic materials physical properties

With the exception of glass fiber, asbestos (qv), and the specialty metallic and ceramic fibers, textile fibers are a class of soHd organic polymers distinguishable from other polymers by their physical properties and characteristic geometric dimensions (see Glass Refractory fibers). The physical properties of textile fibers, and indeed of all materials, are a reflection of molecular stmcture and intermolecular organization. The abiUty of certain polymers to form fibers can be traced to several stmctural features at different levels of organization rather than to any one particular molecular property. [Pg.271]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Aluminosilicate Fibers. Vitreous alurninosihcate fibers, more commonly known as refractory ceramic fibers (RCF), belong to a class of materials known as synthetic vitreous fibers. Fiber glass and mineral wool are also classified as synthetic vitreous fibers, and together represent 98% of this product group. RCFs were discovered in 1942 (18) but were not used commercially until 1953. Typical chemical and physical properties of these materials are shown in Table 3. [Pg.56]

Properties and Mature of Bonding. The metaUic carbides are interesting materials that combine the physical properties of ceramics (qv) with the electronic nature of metals. Thus they are hard and strong, but at the same time good conductors of heat and electricity. [Pg.440]

The piopeities of a ceramic material that make it suitable for a given electronic appHcation are intimately related to such physical properties as crystal stmcture, crystallographic defects, grain boundaries, domain stmcture, microstmcture, and macrostmcture. The development of ceramics that possess desirable electronic properties requires an understanding of the relationship between material stmctural characteristics and electronic properties and how processing conditions maybe manipulated to control stmctural features. [Pg.342]

In the ceramics field many of the new advanced ceramic oxides have a specially prepared mixture of cations which determines the crystal structure, through the relative sizes of the cations and oxygen ions, and the physical properties through the choice of cations and tlreh oxidation states. These include, for example, solid electrolytes and electrodes for sensors and fuel cells, fenites and garnets for magnetic systems, zirconates and titanates for piezoelectric materials, as well as ceramic superconductors and a number of other substances... [Pg.234]

Ceramic materials are typically noncrystalline inorganic oxides prepared by heat-treatment of a powder and have a network structure. They include many silicate minerals, such as quartz (silicon dioxide, which has the empirical formula SiO,), and high-temperature superconductors (Box 5.2). Ceramic materials have great strength and stability, because covalent bonds must be broken to cause any deformation in the crystal. As a result, ceramic materials under physical stress tend to shatter rather than bend. Section 14.22 contains further information on the properties of ceramic materials. [Pg.315]

Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (SijN ), and boron nitride (BN) offer a wide variety of unique physical properties such as high hardness and high structural stability under environmental extremes, as well as varied electronic and optical properties. These advantageous properties provide the driving force for intense research efforts directed toward developing new practical applications for these materials. These efforts occur despite the considerable expense often associated with their initial preparation and subsequent transformation into finished products. [Pg.124]

One potential solution to these problems, suggested some 20 years ago by Chantrell and Popper (1), involves the use of inorganic or organo-metallic polymers as precursors to the desired ceramic material. The concept (2) centers on the use of a tractable (soluble, meltable or malleable) inorganic precursor polymer that can be shaped at low temperature (as one shapes organic polymers) into a coating, a fiber or as a matrix (binder) for a ceramic powder. Once the final shape is obtained, the precursor polymer can be pyrolytically transformed into the desired ceramic material. With careful control of the pyrolysis conditions, the final piece will have the appropriate physical and/or electronic properties. [Pg.125]

Because these materials are the first examples of highly oxidized nonstoichiometric ceramic oxide superconductors, the determination and optimization of the physical properties has been a major technical and scientific challenge. The observed properties, and the impact of chemistry on them are reviewed here. [Pg.359]


See other pages where Ceramic materials physical properties is mentioned: [Pg.2702]    [Pg.319]    [Pg.320]    [Pg.68]    [Pg.50]    [Pg.27]    [Pg.167]    [Pg.248]    [Pg.212]    [Pg.471]    [Pg.472]    [Pg.851]    [Pg.873]    [Pg.417]    [Pg.169]    [Pg.851]    [Pg.385]    [Pg.251]    [Pg.256]    [Pg.271]    [Pg.493]    [Pg.227]    [Pg.124]    [Pg.275]    [Pg.840]    [Pg.241]    [Pg.29]    [Pg.373]    [Pg.31]    [Pg.231]    [Pg.246]    [Pg.468]    [Pg.347]    [Pg.405]    [Pg.675]    [Pg.252]   
See also in sourсe #XX -- [ Pg.246 ]

See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Ceramic materials

Material physical properties

© 2024 chempedia.info