Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Centrifugal pump characteristic curve

Figure 3-50. Typical centrifugal pump characteristic curve vrith auxiliary specific speed curve. Double-suction, single-stage, 6-in. pump, operating at 1760 rpm constant speed. (By permission, Karassik, I. and Carter, B., Centrifugal Pumps, McGraw-Hill Book Co., inc., 1360, p. 197.)... Figure 3-50. Typical centrifugal pump characteristic curve vrith auxiliary specific speed curve. Double-suction, single-stage, 6-in. pump, operating at 1760 rpm constant speed. (By permission, Karassik, I. and Carter, B., Centrifugal Pumps, McGraw-Hill Book Co., inc., 1360, p. 197.)...
FIGURE 10 Typical centrifugal pump characteristic curves showing efficiency curves and NPSH (net positive suction head) for several impeller diameters. [Pg.276]

Related Calculations. Use the similarity laws to extend or change the data obtained from centrifugal-pump characteristic curves. These laws are also useful in field calculations when the pump head, capacity, speed, or impeller diameter is changed. [Pg.204]

FIGURE 5.9 Typical centrifugal pump characteristic curves. (From TRW Mission Pump Brochure.)... [Pg.445]

For a given centrifugal pump operating at a constant speed, the flow rate through the pump is dependent upon the differential pressure or head developed by the pump. The lower the pump head, the higher the flow rate. A vendor manual for a specific pump usually contains a curve of pump flow rate versus pump head called a pump characteristic curve. After a pump is installed in a system, it is usually tested to ensure that the flow rate and head of the pump are within the required specifications. A typical centrifugal pump characteristic curve is shown in Figure 21.3. [Pg.396]

Figure 3. Effect of water temperature and NPSH on a single stage, centrifugal pump, characteristic curve... Figure 3. Effect of water temperature and NPSH on a single stage, centrifugal pump, characteristic curve...
Most centrifugal pumps are controlled by throttling the flow with a valve on the pump discharge, see Section 5.8.3. This varies the dynamic pressure loss, and so the position of the operating point on the pump characteristic curve. [Pg.210]

You must select a centrifugal pump that will develop a pressure of 40 psi when pumping a liquid with an SG of 0.88 at a rate of 300 gpm. From all the pump characteristic curves in Appendix H, select the best pump for this job. Specify pump head, impeller diameter, motor speed, efficiency, and motor horsepower. [Pg.257]

You must chose a centrifugal pump to pump a coal slurry. You have determined that the pump must deliver 200 gpm at a pressure of at least 35 psi. Given the pump characteristic curves in Appendix H, tell which pump you would specify (give pump size, speed, and impeller diameter) and why What is the efficiency of this pump at its operating point, what horsepower motor would be required to drive the pump, and what is the required NPSH of the pump The specific gravity of the slurry is 1.35. [Pg.261]

Related Calculations. Use this procedure for any centrifugal pump handling any liquid in any service—power, process, marine, industrial, or commercial. Pump manufacturers can supply a temperature-rise curve for a given model pump if it is requested. This curve is superimposed on the pump characteristic curve and shows the temperature rise accompanying a specific flow through the pump. [Pg.228]

To select a centrifugal pump size we must examine pump characteristic curves, which are plots of head versus flow rate. Reference 8.21 discusses the factors... [Pg.463]

Inequality constraints, g x, are expressions that involve any or all of the set of variables, i, and are used to bound the feasible region of operation. For example, when operating a centrifugal pump, the head developed decreases with increasing flow rate according to a pump characteristic curve. Hence, if the flow rate is varied when optimizing the process, care must be taken to make sure that the required pressure increase (head) does not exceed that available from the pump. The expression might be of the form. [Pg.619]

Figure 1, Influence of net positive suction head on a characteristic single stage, centrifugal pump performance curve (H O at 70 F)... [Pg.257]

FIG. 10-28 Characteristic curve of a centrifugal pump operating at a constant speed of. 3450 r/min. To convert gallons per minute to cubic meters per hour, multiply hy 0.2271 to convert feet to meters, multiply hy 0..3048 to convert horsepower to kilowatts, multiply hy 0.746 and to convert inches to centimeters, multiply hy 2.54. [Pg.903]

It is important to recognize that a centrifugal pump will operate only along its performance curve [10, 11]. External conditions will adjust themselves, or must be adjusted in order to obtain stable operation. Each pump operates within a system, and the conditions can be anticipated if each component part is properly examined. The system consists of the friction losses of the suction and the discharge piping plus the total static head from suction to final discharge point. Figure 3-51 represents a typical system head curve superimposed on the characteristic curve for a 10 by 8-inch pump with a 12-inch diameter impeller. [Pg.197]

The static pressure difference will be independent of the fluid flow-rate. The dynamic loss will increase as the flow-rate is increased. It will be roughly proportional to the flow-rate squared, see equation 5.3. The system curve, or operating line, is a plot of the total pressure head versus the liquid flow-rate. The operating point of a centrifugal pump can be found by plotting the system curve on the pump s characteristic curve, see Example 5.3. [Pg.210]

When selecting a centrifugal pump for a given duty, it is important to match the pump characteristic with system curve. The operating point should be as close as is practical to the point of maximum pump efficiency, allowing for the range of flow-rate over which the pump may be required to operate. [Pg.210]

Total head against capacity characteristic curve fora volute centrifugal pump... [Pg.145]

A centrifugal pump will operate normally at a point on its total head against capacity characteristic curve until the available NPSH falls below the required NPSH curve. Beyond this point, the total head generated by a centrifugal pump falls drastically as shown in Figure 4.6 as the pump begins to operate in cavitation conditions. [Pg.148]

If the characteristic performance curves are available for a centrifugal pump operating at a given rotation speed, equations 4.28 to 4.30 enable the characteristic performance curves to be plotted for other operating speeds and for other slightly different impeller diameters. [Pg.154]

Horizontal centrifugal pumps should provide 150% of the rated capacity at 65% of the rated pressure, with a shutoff head of not more than 120% of the rated pressure. This pump should be used only when suction supply is under a positive head. Suction pipes should be designed to preclude the formation of air bubbles. A characteristic curve for a rated fire water pump is shown in Figure 7-15. [Pg.178]


See other pages where Centrifugal pump characteristic curve is mentioned: [Pg.397]    [Pg.397]    [Pg.902]    [Pg.144]    [Pg.725]    [Pg.249]    [Pg.144]    [Pg.445]    [Pg.906]    [Pg.117]    [Pg.175]    [Pg.209]    [Pg.175]    [Pg.209]    [Pg.230]    [Pg.336]    [Pg.208]    [Pg.322]    [Pg.33]   
See also in sourсe #XX -- [ Pg.208 , Pg.209 , Pg.480 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Centrifugal Pumping

Characteristic curve

Pump curve

Pumps centrifugal pump

Pumps characteristic curves

Pumps characteristics

© 2024 chempedia.info