Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cell-containing systems

As the complexity of the biological system varies from highly purified enzymes to whole cell-containing systems, so do some of the practical dimensions of the experiments vary. Therefore this chapter is organized accordingly. [Pg.607]

As for isolated enzymes, cell-containing systems have been used for a number of functional group transformations. Examples range from redox reactions to group-transfer reactions. [Pg.619]

In one of the early experiments designed to elucidate the genetic code, Marshall Nirenberg of the U.S. National Institutes of Health (Nobel Prize in physiology or medicine, 1968) prepared a synthetic mRNA in which all the bases were uracil. He added this poly(U) to a cell-free system containing all the necessary materials for protein biosynthesis. A polymer of a single amino acid was obtained. What amino acid was polymerized ... [Pg.1191]

Plant cells contain a unique family of organelles, the plastids, of which the chloroplast is the prominent example. Chloroplasts have a double membrane envelope, an inner volume called the stroma, and an internal membrane system rich in thylakoid membranes, which enclose a third compartment, the thylakoid lumen. Chloroplasts are significantly larger than mitochondria. Other plastids are found in specialized structures such as fruits, flower petals, and roots and have specialized roles. [Pg.29]

The processes of electron transport and oxidative phosphorylation are membrane-associated. Bacteria are the simplest life form, and bacterial cells typically consist of a single cellular compartment surrounded by a plasma membrane and a more rigid cell wall. In such a system, the conversion of energy from NADH and [FADHg] to the energy of ATP via electron transport and oxidative phosphorylation is carried out at (and across) the plasma membrane. In eukaryotic cells, electron transport and oxidative phosphorylation are localized in mitochondria, which are also the sites of TCA cycle activity and (as we shall see in Chapter 24) fatty acid oxidation. Mammalian cells contain from 800 to 2500 mitochondria other types of cells may have as few as one or two or as many as half a million mitochondria. Human erythrocytes, whose purpose is simply to transport oxygen to tissues, contain no mitochondria at all. The typical mitochondrion is about 0.5 0.3 microns in diameter and from 0.5 micron to several microns long its overall shape is sensitive to metabolic conditions in the cell. [Pg.674]

A prerequisite of long-life sodium/sulfur batteries is that the cells contain suitable corrosion-resistant materials which withstand the aggressively corrosive environment of this high—temperature system. Stackpool and Maclachlan have reported on investigations in this field [17], The components in an Na/S cell are required to be corrosion-resistant towards sodium, sulfur and especially sodium polysulphides. Four cell components suffer particularly in the Na/S environment the glass seal, the anode seal, the cathode seal, and the current collector (in central sodium arrangements, the cell case). [Pg.575]

Historically, the development of animal cell culture systems has been dependent upon the development of new types of tissue culture media. Mouse L cells and HeLa cells were developed using a balanced salt solution supplemented with blood plasma, an embryonic tissue extract, and/or serum. In 1955 Eagle developed a nutritionally defined medium, containing all of the essential amino acids, vitamins, cofactors, carbohydrates, salts, and small amounts of dialyzed serum (Table 1). He demonstrated that this minimal essential medium (MEM) supported the long-term growth of mouse L and HeLa ceils. Eagle s MEM was so well defined that the omission of a single essential nutrient eventually resulted in the death of these animal cells in culture. [Pg.471]

Although N ADPH reqfding systems are well known, it is currently more convenient to use whole cells containing CHMO. [Pg.50]

Enantioselective transformations of several cyclopropane or oxirane-containing nitriles were studied using nitrile-transforming enzymes [78]. Microbial Rhodococcus sp. whole cells containing a nitrile hydratase/amidase system hydrolyzed a number... [Pg.144]

Fig. 7. A typical X-ray diffraction pattern of the Fepr protein fromZJ. vulgaris (Hil-denborough). The pattern was recorded on station 9.6 at the Synchrotron Radiation Source at the CCLRC Daresbury Laboratory using a wavelength 0.87 A and a MAR-Research image-plate detector system with a crystal-to-detector distance of 220 nun. X-ray data clearly extend to a resolution of 1.5 A, or even higher. The crystal system is orthorhombic, spacegroup P2i2i2i with unit cell dimensions, a = 63.87, b = 65.01, c = 153.49 A. The unit cell contains four molecules of 60 kDa moleculEu- weight with a corresponding solvent content of approximately 48%. Fig. 7. A typical X-ray diffraction pattern of the Fepr protein fromZJ. vulgaris (Hil-denborough). The pattern was recorded on station 9.6 at the Synchrotron Radiation Source at the CCLRC Daresbury Laboratory using a wavelength 0.87 A and a MAR-Research image-plate detector system with a crystal-to-detector distance of 220 nun. X-ray data clearly extend to a resolution of 1.5 A, or even higher. The crystal system is orthorhombic, spacegroup P2i2i2i with unit cell dimensions, a = 63.87, b = 65.01, c = 153.49 A. The unit cell contains four molecules of 60 kDa moleculEu- weight with a corresponding solvent content of approximately 48%.

See other pages where Cell-containing systems is mentioned: [Pg.205]    [Pg.337]    [Pg.339]    [Pg.15]    [Pg.20]    [Pg.15]    [Pg.618]    [Pg.205]    [Pg.337]    [Pg.339]    [Pg.15]    [Pg.20]    [Pg.15]    [Pg.618]    [Pg.1122]    [Pg.340]    [Pg.642]    [Pg.1191]    [Pg.381]    [Pg.128]    [Pg.225]    [Pg.520]    [Pg.535]    [Pg.556]    [Pg.557]    [Pg.82]    [Pg.2132]    [Pg.17]    [Pg.74]    [Pg.830]    [Pg.27]    [Pg.140]    [Pg.118]    [Pg.1364]    [Pg.31]    [Pg.180]    [Pg.304]    [Pg.228]    [Pg.486]    [Pg.500]    [Pg.370]    [Pg.292]    [Pg.55]    [Pg.87]    [Pg.655]    [Pg.156]   


SEARCH



Cell-containing

Containment cells

Containment system

System containing

© 2024 chempedia.info