Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic radical polymerization steps

Hence, cation-radical copolymerization leads to the formation of a polymer having a lower molecular weight and polydispersity index than the polymer got by cation-radical polymerization— homocyclobutanation. Nevertheless, copolymerization occnrs nnder very mild conditions and is regio-and stereospecihc (Bauld et al. 1998a). This reaction appears to occnr by a step-growth mechanism, rather than the more efficient cation-radical chain mechanism proposed for poly(cyclobutanation). As the authors concluded, the apparent suppression of the chain mechanism is viewed as an inherent problem with the copolymerization format of cation-radical Diels-Alder polymerization. ... [Pg.361]

Polythiophene and its derivatives can be polymerized by chemical or electrochemical techniques. In this study, the electrochemical method was utilized.The mechanism is a cationic radical polymerization 11). The polymerization pathway can be summarized in the following steps 1) oxidation of the monomer to form a radical cation, 2) dimerization of the radical cations, 3) loss of proton to yield a neutral dimer, 4) oxidation of dimer to form a radical cation, 5) reaction of dimer radical cation with another radical cation, 6) repeat of the this study, are 3-methylthiophene, tetrabutylammonium tetrafluoroborate (TBATFB), as the supporting electrolyte. The organic solvent was acetonitrile. The resulting polymer was the first conducting polymer family found to be stable in air and water in both their doped or undoped state. [Pg.138]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]

Strong evidence for the radical cation-radical cation coupling mechanism shown in Scheme 1 has been obtained from double-step chronoam-perometry studies.66,67 However, an alternative polymerization mechanism, involving the coupling of radical cations with unoxidized molecules, has been claimed by a number of authors.55,68,69 Some of the... [Pg.556]

The degree of polymerization depends on the duration of the process. After 7 min, the molecular mass is equal to 9400 (the polydispersity index is 5.30). When the reaction is carried out for 15 min, the molecular mass of the polymer increases to 37,000 and the polydispersity index reaches 7.31 (Bauld et al. 1996). Depending on whether cation-radical centers arise at the expense of intramolecular electron transfer or in a stepwise intermolecular lengthening, polymerization can occur, respectively, through a chain or a step-growth process (Bauld and Roh 2002). In the reaction depicted in Scheme 7.17, both chain and step-growth propagations are involved. [Pg.361]

On the basis of the nature of the initiation step, polymerization reactions of unsaturated hydrocarbons can be classified as cationic, anionic, and free-radical polymerization. Ziegler-Natta or coordination polymerization, though, which may be considered as an anionic polymerization, usually is treated separately. The further steps of the polymerization process (propagation, chain transfer, termination) similarly are characteristic of each type of polymerization. Since most unsaturated hydrocarbons capable of polymerization are of the structure of CH2=CHR, vinyl polymerization as a general term is often used. [Pg.734]

When the gas stream was changed from humidified air to dry air, the amount of carbon deposits, very probably attributable to the polymeric products, increased. In this stage, as the surface hydroxyl groups were consumed, the probability for the direct reaction of hole with benzene (formation of benzene cation radical) may be increased. The benzene cation radical formed on the solid surface may react with benzene, which is one of the main steps in the polymerization.83... [Pg.73]

Sporer (45) gives conclusive evidence for the presence of a radical intermediate [electron paramagnetic resonance (EPR), and radical polymerization] but fails to describe the path by which the intermediate radical is converted to the cation. As possibilities he cites the crossing of the excited molecule to another, undescribed state from which it reacts, and reaction during the internal conversion step in which a molecule in the excited state converts to a molecule in a high vibrational ground state. Kinetic studies by Brown et al. (46) support the formation of ion-pair intermediates in the dark reactions. [Pg.288]

Typical monomers that may be polymerized by cationic methods include styrene, isobutylene, and vinyl ethers. Unlike radical polymerizations, solvent polarity can influence the rate of polymerization. This is due to the presence of the counterion (see Fig. 15.13). For example, more polar solvents can increase the degree of separation between the growing end and the counterion during the propagation step, increasing the rate of propagation.17... [Pg.632]

Formulate the mechanisms of radical, cationic, anionic, and step-growth polymerizations. [Pg.858]

There are essentially two different mechanisms that UV curing may occur by — free radical or cationic. Free radical polymerization is the most predominantly used route and will be discussed first. The chain reaction that occurs consists of at least four steps ... [Pg.163]

The first reaction describes the excitation of uranyl ions. The excited sensitizer can lose the energy A by a non-radiative process (12b), by emission (12c) or by energy transfer in monomer excitation to the triplet state (12d). Radicals are formed by reaction (12e). The detailed mechanism of step (12e) is so far unknown. Electron transfer probably occurs, with radical cation and radical anion formation these can recombine by their oppositely charged ends. The products retain their radical character. Step (12g) corresponds to propagation and step (12f) to inactivation of the excited monomer by collision with another molecule. The photosensitized initiation and polymerization of methacrylamide [69] probably proceeds according to scheme (12). Ascorbic acid and /7-carotene act as sensitizers of isoprene photoinitiation in aqueous media [70], and diacetyl (2, 3-butenedione) as sensitizer of viny-lidene chloride photopolymerization in a homogeneous medium (N--methylpyrrolidone was used as solvent) [71]. [Pg.89]

When the active centre concentrations change during propagation, the whole polymerization is non-stationary. Kinetically the process becomes more complicated and often even experimental control of the process becomes more difficult. On the other hand, a non-stationary condition can be utilized in studies of the elementary polymerization steps. To this end, the non-stationary phases of radical polymerizations are suitable, where outside these phases the process is essentially stationary [23-25]. Hayes and Pepper [26] called attention to the existence and solution of a simple non-stationary case caused by slower decay of rapidly generated cationic centres. In more complicated cases, exact analysis of the causes of a non-stationary condition is often beyond present possibilities. Information from the process kinetics is often not conclusive. It should be mentioned that, even when the condition d[Ac]/dt = 0 is strictly valid, polymerizations may be non-stationary, particularly in those cases when during propagation the more active form of the centres is slowly transformed to the less active form or vice versa. [Pg.243]

The proposed mechanism was identical with that in acid-catalyzed reactions except for the initiation step. Photolysis of the iodonium salt yields cations and cation radicals that react with traces of water or the monomer to form HX [23]. The Bronsted acid HX then functions similarly to other Bronsted acids in the polymerization reactions. 1,3-Diisopropenylbenzene has also been polymerized in a photoinitiated cationic reaction using 70 as the initiator [Eq. (14)] [9]. [Pg.569]

Several mechanisms have been proposed for both electrochemical and chemical oxidative synthesis of poly thiophenes. The proposed mechanisms are similar to those proposed for polypyrrole formation. The first step of the polymerization is the oxidation of the thiophene monomer to a cation radical. The subsequent steps are controversial. There are several possibilities. The cation radical can couple with another cation radical or with a neutral species. Alternatively, the cation radical can deprotonate to form a neutral radical. This radical can then couple with another radical or with a neutral species. Several of these possibilities are discussed below. [Pg.642]

Another mechanistic possibility is the attack of the thiophene cation radical (420) upon a neutral thiophene monomer (419) to form a cation-radical dimer (421) [247]. The oxidation and loss of two protons leads to formation of the neutral dimer (422). Once again, rapid oxidation of the dimer occurs upon its formation due to its close proximity to the electrode surface and its lower oxidation potential. The cation-radical dimer (423) which is formed then reacts with another monomer molecule in a similar series of steps to produce the trimer 425. A kinetic study of the electrochemical polymerization of thiophene and 3-alkylthiophenes led to the proposal of this mechanism (Fig. 61) [247]. The rate-determining step in this series of reactions is the oxidation of the thiophene monomer. The reaction is first order in monomer concentration. The addition of small amounts of 2,2 -bithiophene or 2,2 5, 2"-terthiophene to the reaction resulted in a significant increase in the rate of polymerization and in a lowering of the applied potential necessary for the polymerization reaction. In this case the reaction was 0.5 order in the concentration of the additive. [Pg.644]

The mechanism of polyaniline formation is an area of active research and controversy. The wide range of reaction conditions used in polyaniline synthesis and the resulting differences in the structure and characteristics of the polymers has probably contributed to the proposal of many different mechanisms. The majority of the proposed mechanisms begin with the oxidation of aniline to a cation radical (445). Two of these cation radicals couple to form /V-phenyl-p-phenylenediamine (443). The oxidation of the aniline monomers to form dimeric species is the slow step in the polymerization [271,285,286]. The subsequent steps of polymer growth are under discussion. [Pg.648]

The preparation of block copolymers by combination of thermally radical and photoinduced cationic polymerization processes has also been reported [151], Indeed, styrene/cyclohexene oxide (CHO) copolymers have been synthesized by using a bifunctional azobenzoin initiator such as ABME, previously described, through a two-step procedure. In the first step, thermal Iree radical polymerization of styrene in the presence of the above azobenzoin initiator gives poly(styrene) prepolymers with benzoin photoactive end groups, as reported in Scheme 38. These prepolymers, upon photolysis and subsequent oxidation to the corresponding carbocations in the presence of l-ethoxy-2-methylpyridinium hexafluoro phosphate (EMP+PFg ), finally give block copolymers by cationic polymerization of cyclohexene oxide (Scheme 45). [Pg.202]


See other pages where Cationic radical polymerization steps is mentioned: [Pg.240]    [Pg.238]    [Pg.482]    [Pg.51]    [Pg.222]    [Pg.41]    [Pg.1]    [Pg.7]    [Pg.408]    [Pg.618]    [Pg.79]    [Pg.216]    [Pg.2]    [Pg.482]    [Pg.1223]    [Pg.51]    [Pg.595]    [Pg.629]    [Pg.640]    [Pg.1277]    [Pg.1220]    [Pg.572]    [Pg.501]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Cationic polymerization

Cationic polymerization polymerizations

Step polymerization

© 2024 chempedia.info