Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic reactions photoinitiated

The proposed mechanism was identical with that in acid-catalyzed reactions except for the initiation step. Photolysis of the iodonium salt yields cations and cation radicals that react with traces of water or the monomer to form HX [23]. The Bronsted acid HX then functions similarly to other Bronsted acids in the polymerization reactions. 1,3-Diisopropenylbenzene has also been polymerized in a photoinitiated cationic reaction using 70 as the initiator [Eq. (14)] [9]. [Pg.569]

Figure 8, Chain reaction photoinitiation. The efficiency of photoinitiation can be increased by chain reactions. Hydrogen abstraction by triplet excited benzophenone forms a THF free radical. Subsequent oxidation by the aryliodonium salt produces the THF cation capable of initiating polymerization, and a phenyl radical. Hydrogen abstraction by the phenyl radical produces the THF free radical completing the... Figure 8, Chain reaction photoinitiation. The efficiency of photoinitiation can be increased by chain reactions. Hydrogen abstraction by triplet excited benzophenone forms a THF free radical. Subsequent oxidation by the aryliodonium salt produces the THF cation capable of initiating polymerization, and a phenyl radical. Hydrogen abstraction by the phenyl radical produces the THF free radical completing the...
This PIP process is concerned with the creation of a polymer P through a chain radical or cationic reaction initiated by light in the presence of a photoinitiator (PI) and a coupled Pl/photosensitizer (PS) ... [Pg.203]

Lapin [33] suggested that photoinitiated cationic polymerization can proceed through reactions of free radicals, as shown below for benzophenone sensitized photoinitiation ... [Pg.1023]

Previously, the same author [52] reported that compounds containing the tricoordinated sulfur cation, such as the triphenylsulfonium salt, worked as effective initiators in the free radical polymerization of MMA and styrene [52]. Because of the structural similarity of sulfonium salt and ylide, diphenyloxosulfonium bis-(me-thoxycarbonyl) methylide (POSY) (Scheme 28), which contains a tetracoordinated sulfur cation, was used as a photoinitiator by Kondo et al. [63] for the polymerization of MMA and styrene. The photopolymerization was carried out with a high-pressure mercury lamp the orders of reaction with respect to [POSY] and [MMA] were 0.5 and 1.0, respectively, as expected for radical polymerization. [Pg.379]

The reactivity of I in photoinitiated cationic polymerization is due to several factors associated with the structure of this monomer. Most importantly, the presence of the ester groups in I which can interact with oxiranium ions generated at either of the two epoxide groups both intra- and intermolecularly produces dioxacarbenium ions of reduced activity in the propagation reaction. Taking this into account, a series of diepoxides were prepared which did not possess ester groups. Some of these monomers show enhanced reactivity as measured by RTIR in photoinitiated cationic polymerization compared to I. [Pg.94]

Because visible light is not energetic enough to break chemical bonds, direct production of free radicals by the photoinitiator does not occur. Instead when cationic initiation is needed, as for reaction with epoxies, DIBF is used in conjunction with an iodonium compound such as 4-octyloxyphenyl-phenyliodonium hexaf luoroantimonate (OPPI). It has been proposed that when irradiated, DIBF and OPPI interact to form a cationic species. [Pg.228]

Additionally, we should mention the photoinitiated reaction between diphenylbutadiene cation-radical and AN (Mattes and Farid 1980 Scheme 7.29). De Lijser and Arnold (1998) have given a theoretical explanation to this reaction. [Pg.369]

With respect to photoinitiation, generally, it is important to be very careful in one s choice of sensitizers. For example, attempts to initiate the cyclization of homobenzylic ethers failed if 1,4-dicyanobenzene was used as a sensitizer. Rapid regeneration of the starting material by back-electron transfer from the dicyanobenzene anion-radical to the substrate cation-radical was the cause of cyclization inefficiency. To slow this unproductive process, a mixture of A-methylquinolinium hexafluorophosphate (sensitizer), solid sodium acetate (buffer), and tert-butylbenzene (cosensitizer) in 1,2-dichloroethane was employed. This dramatically increased the efficiency of the reaction, providing cyclic product yields of more than 90% in only 20 min (Kumar and Floreancig 2001, Floreancig 2007). [Pg.369]

The radiolysis of olefinic monomers results in the formation of cations, anions, and free radicals as described above. It is then possible for these species to initiate chain polymerizations. Whether a polymerization is initiated by the radicals, cations, or anions depends on the monomer and reaction conditions. Most radiation polymerizations are radical polymerizations, especially at higher temperatures where ionic species are not stable and dissociate to yield radicals. Radiolytic initiation can also be achieved using initiators, like those used in thermally initiated and photoinitiated polymerizations, which undergo decomposition on irradiation. [Pg.225]

Table 2.23 Decomposition reactions of some cationic photoinitiators... Table 2.23 Decomposition reactions of some cationic photoinitiators...
Epoxy acrylates are also commonly used as oligomers in radiation-curing coatings and adhesives. However, their name often leads to confusion. In most cases, these epoxy acrylates have no free epoxy groups left but react through their unsaturation. These resins are formulated with photoinitiators to cure via uv or electron beam (EB) radiation. The reaction mechanism is generally initiated by free radicals or by cations in a cationic photoinitiated system. The uv/EB cured epoxy formulations are discussed in Chap. 14. [Pg.84]

A typical cationic uv adhesive formulation contains an epoxy resin, a cure-accelerating resin, a diluent (which may or may not be reactive), and a photoinitiator. The initiation step results in the formation of a positively charged center through which an addition polymerization reaction occurs. There is no inherent termination, which may allow a significant postcure. Once the reaction is started, it continues until all the epoxy chemistry is consumed and complete cure of the resin has been achieved. Thus, these systems have been termed living polymers. [Pg.263]

Cationic photoinitiators are frequently found in classes of compounds such as the triaryl sulfonium, tetraaryl phosphonium, and diaryliodonium salts of large protected anions (hexafluorophosphates or antimonates). These compounds are soluble in most epoxy resins, do not activate epoxy cure until exposed to uv light, are insensitive to room lighting, and have long storage life at room temperature. Cationic photoinitiators form an acid catalyst when exposed to uv light and consequently start the cationic chemical reaction. [Pg.264]

As outlined in Scheme 2, for cationic photopolymerization a photoinduced formation of species X+ or Lewis acids is required [162]. Such species are formed both by PET between neutral donors and acceptors (see Scheme 3), between neutral donors and positive charged acceptors (see Schemes 9 and 11), respectively, and by an indirect PET between nucleophilic radicals and onium salts or halogen compounds (see Eq. (16) and Scheme 12). Therefore, combinations of compounds, whose light-induced reactions are based on the pathways given above, are usable as photoinitiators for cationic polymerizations, too. Prerequisites for the use of cations... [Pg.191]

Cationic polymerizations induced by thermally and photochemically latent N-benzyl and IV-alkoxy pyridinium salts, respectively, are reviewed. IV-Benzyl pyridinium salts with a wide range of substituents of phenyl, benzylic carbon and pyridine moiety act as thermally latent catalysts to initiate the cationic polymerization of various monomers. Their initiation activities were evaluated with the emphasis on the structure-activity relationship. The mechanisms of photoinitiation by direct and indirect sensitization of IV-alkoxy pyridinium salts are presented. The indirect action can be based on electron transfer reactions between pyridinium salt and (a) photochemically generated free radicals, (b) photoexcited sensitizer, and (c) electron rich compounds in the photoexcited charge transfer complexes. IV-Alkoxy pyridinium salts also participate in ascorbate assisted redox reactions to generate reactive species capable of initiating cationic polymerization. The application of pyridinium salts to the synthesis of block copolymers of monomers polymerizable with different mechanisms are described. [Pg.59]

Free radical promoted, cationic polymerization also occurs upon irradiation of pyridinium salts in the presence of acylphosphine oxides. But phosphonyl radicals formed are not oxidized even by much stronger oxidants such as iodonium ions as was demonstrated by laser flash photolysis studies [51, 52]. The electron donor radical generating process involves either hydrogen abstraction or the addition of phosphorus centered or benzoyl radicals to vinyl ether monomers [53]. Typical reactions for the photoinitiated cationic polymerization of butyl vinyl ether by using acylphosphine oxide-pyridinium salt combination are shown in Scheme 10. [Pg.72]

The first reaction describes the excitation of uranyl ions. The excited sensitizer can lose the energy A by a non-radiative process (12b), by emission (12c) or by energy transfer in monomer excitation to the triplet state (12d). Radicals are formed by reaction (12e). The detailed mechanism of step (12e) is so far unknown. Electron transfer probably occurs, with radical cation and radical anion formation these can recombine by their oppositely charged ends. The products retain their radical character. Step (12g) corresponds to propagation and step (12f) to inactivation of the excited monomer by collision with another molecule. The photosensitized initiation and polymerization of methacrylamide [69] probably proceeds according to scheme (12). Ascorbic acid and /7-carotene act as sensitizers of isoprene photoinitiation in aqueous media [70], and diacetyl (2, 3-butenedione) as sensitizer of viny-lidene chloride photopolymerization in a homogeneous medium (N--methylpyrrolidone was used as solvent) [71]. [Pg.89]

A considerable number of detailed descriptions on synthesis, production, and applications of epoxy resins exists. Because the aim of this chapter is the application of cationic initiators, and more particularly photoinitiators, to the polymerization of epoxies leading to cross-linked products (curing reaction), only litterature dealing with these aspects will be cited. For the general aspects of epoxy resins the scientific and patent literature may be found in detailed reviews [119,120] and classical books [121-123]. [Pg.720]


See other pages where Cationic reactions photoinitiated is mentioned: [Pg.332]    [Pg.357]    [Pg.241]    [Pg.266]    [Pg.1]    [Pg.38]    [Pg.357]    [Pg.388]    [Pg.390]    [Pg.352]    [Pg.433]    [Pg.355]    [Pg.355]    [Pg.64]    [Pg.108]    [Pg.121]    [Pg.219]    [Pg.57]    [Pg.144]    [Pg.39]    [Pg.380]    [Pg.275]    [Pg.130]    [Pg.352]    [Pg.334]    [Pg.338]    [Pg.331]    [Pg.172]    [Pg.141]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 ]




SEARCH



Cationic photoinitiator

Cationic reactions

Photoinitiated

Photoinitiated cationic

Photoinitiated reactions

Photoinitiation

Photoinitiator

Photoinitiators

Photoinitiators cationic

© 2024 chempedia.info