Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathode, chemical reduction

Electrolytic reductions generally caimot compete economically with chemical reductions of nitro compounds to amines, but they have been appHed in some specific reactions, such as the preparation of aminophenols (qv) from aromatic nitro compounds. For example, in the presence of sulfuric acid, cathodic reduction of aromatic nitro compounds with a free para-position leads to -aminophenol [123-30-8] hy rearrangement of the intermediate N-phenyl-hydroxylamine [100-65-2] (61). [Pg.263]

Stibiae may be prepared by the treatment of metal antimonides with acid, chemical reduction of antimony compounds, and the electrolysis of acid or alkaline solutions usiag a metallic antimony cathode ... [Pg.202]

These facts would suggest that die electrolysis of molten alkali metal salts could lead to the inuoduction of mobile elecU ons which can diffuse rapidly through a melt, and any chemical reduction process resulting from a high chemical potential of the alkali metal could occur in the body of the melt, rather than being conhned to the cathode volume. This probably explains the failure of attempts to produce tire refractoty elements, such as titanium, by elecU olysis of a molten sodium chloride-titanium chloride melt, in which a metal dust is formed in the bulk of the elecU olyte. [Pg.319]

These observations for Fe(Cp)2 in the presence of the polymer-bound Cr complex are consistent with Fe(Cp)2+, generated electrochemically, undergoing a reaction with Cr(CN-[P])c resulting in the chemical reduction of Fe(Cp)2+ and oxidation of the Cr species. Therefore, when the cathodic part of the Fe(Cp)2 /Fe(Cp)2+ wave is scanned, little ferricenium ion remains to be reduced electrochemically. As a result, the ferrocene molecule has effected the transfer of electrons from the polymer to the electrode. [Pg.248]

Electrochemical corrosion processes also include a number of processes in organic chemistry, involving the reduction of various compounds by metals or metal amalgams. A typical example is the electrochemical carbonization of fluoropolymers mentioned on p. 316. These processes, that are often described as purely chemical reductions, can be explained relatively easily on the basis of diagrams of the anodic and cathodic polarization curves of the type shown in Fig. 5.54. [Pg.394]

In the cell, chlorate and bromate are converted to chloride and bromide at the cathode by reduction with nascent hydrogen, although the chlorate reacts only partially. The chlorate remaining in the cell-liquor can be reduced with thiosulphate or another chemical reducing agent ... [Pg.192]

Fuel cells, like batteries, convert the chemical energy residing in a fuel into electrical energy on demand. As in batteries and other electrochemical cells, fuel cells consist of an anode, where oxidation occurs, a cathode, where reduction occurs, and an electrolyte, where ions carry the current between the electrodes. Fuel cells differ from batteries in that the fuel and oxidant are not contained within the fuel... [Pg.22]

At elevated temperatures, there are five possible reactions that can occur between the cell components (1) thermal decomposition of bulk electrolyte (2) chemical reduction of electrolyte by the anode (3) chemical oxidation of electrolyte by the cathode (4) thermal decomposition of the cathode and anode or (5) melting of the separator and the consequent internal short. To identify which of these contributes the decisive amount of heat that is critical in initiating the thermal runaway, it is necessary to study the thermal responses of these individual components or component couples separately. [Pg.119]

Another example concerns the initial electronic reduction of a-nitrostilbene (Todres et al. 1982, 1985, Todres and Tsvetkova 1987, Kraiya et al. 2004). The reduction develops according to direction a in Scheme 2.9 if the mercury cathode as well as cyclooctatetraene dianion are electron sources and according to direction b if the same stilbene enters the charge-transfer complexes with bis(pyridine)-tungsten tetra(carbonyl) or uranocene. For direction b, the charge-transfer bands in the electronic spectra are fixed. So the mentioned data reveal a great difference in electrochemical and chemical reduction processes a and b as they are marked in Scheme 2.9. [Pg.98]

Conversion of substituted nitrobenzenes to the arylhydroxylamine is easily achieved by reduction in neutral or slightly acid solution. In the first classical experiments, Haber [35] used a platinum cathode and ammonia ammonium chloride buffer and die process was improved by Brand [57] using either a nickel or silvered copper cathode in an acetate buffer. The hydroxylamine can also be obtained from reduction in dilute sulphuric acid provided tire temperature is kept below 15° C to suppress furtlier reduction [58]. This electrochemical route to arylhydroxylamines due to Brand is superior to the chemical reduction using zinc dust and ammonium chloride solution. The latter process is known to give variable yields depending on... [Pg.379]

Lithium metal is produced commercially by electrolysis of a fused eutectic mixture of hthium chloride-potassium chloride (45% LiCl) at 400 to 450°C. The eutectic mixture melts at 352°C in comparison to the pure LiCl melting at 606°C. Also, the eutectic melt is a superior electrolyte to LiCl melt. (Landolt, P.E. and C. A. Hampel. 1968. Lithium. In Encyclopedia of Chemical Elements.C. A. Hampel, Ed. Reinhold Book Corp. New York.) Electrolysis is carried out using graphite anodes and steel cathodes. Any sodium impurity in hthium chloride may be removed by vaporizing sodium under vacuum at elevated temperatures. All commercial processes nowadays are based on electrolytic recovery of the metal. Chemical reduction processes do not yield high purity-grade metal. Lithium can be stored indefinitely under airtight conditions. It usually is stored under mineral oil in metal drums. [Pg.488]

It has been established that most cathode metals are to some extent soluble in chromic acid solutions, and ions will enter the solution in the highest available oxidation state [e.g. copper(II), gold(III)]. Polarization of the cathode will then cause reduction to lower oxidation states [kinetic factors will prevent the prior reduction of chromate(VI)], then new low-valent species may then initiate a chemical reduction of the chromium(Vl). Chromium deposition occurs within the potential range for the evolution of dihydrogen and, indeed, the latter is the dominant cathode process with the result that typically cathode current efficiencies of only 10-20% are achieved (see equation 9). [Pg.5]

Dithiazolium cations can be readily reduced to the stable mono- and diradicals. Reaction of the disalt 43 could be effected, on a milligram scale, by electrolysis in an acetonitrile solution at 50 pA onto Pt wire cathode <1997JA2633>. Larger quantities could be obtained by chemical reduction. Attempts to reduce cation 43 directly with silver or zinc powder were unsuccessful. The most successful approach involved the use of triphenylantimony as reducing agent and bis(triphenylphosphine)iminium chloride ((PPN)Cl Equation (5)). The product obtained (7) is remarkably stable in the solid state, in air, and in organic solutions. [Pg.47]

The best results are obtained with the PEM electrolyser current density of 1 200 A/m2 under cell voltage of 1 V corresponding to a hydrogen production of 500 NL.fr1.nr2. The results from both electrolysers show sulphur deposition at the cathode. This chemical reduction consumes electrons at the expense of hydrogen production causing sulphur to poison the catalyst and modify the membrane conductivity. [Pg.220]

Radical anions 189 (Eq. (243) ) are generated by electron transfer from the cathode or a reducing agent to the lowest empty orbital (LUMO) of a neutral substrate. The electrochemical generation of the radical anion (or cation) is superior to chemical reduction (or oxidation). Advantages are the use of a wider range of solvents, the applicability of an electrode potential that can be regulated at will... [Pg.147]

The course of electrical reduction, like that of purely chemical reduction, depends decisively upon whether the reduction is carried out in an alkaline or acid solution. But these relations are of a positive nature in electrolysis only so long as they are not compensated by the electrical factors, such as cathode material and potential. To avoid a complication, it is necessary to limit the considerations primarily to unattackable cathodes and to take no account of an adjustment to certain and constant cathode potentials, and to exclude a secondary interference of the solvent, for instance by molecular rearrangements. In this general comprehension of the problem it can be said that the well-known chemical rule reoccurs in electrolytical... [Pg.145]

The electrochemical reduction of ketones in alkaline solution at lead cathodes gives the same products as the chemical reduction with sodium. amalgafn or with zinc dust and alkali the process is in many cases suitable for the preparation of benzhydrols. [Pg.207]

The vast majority of engineering materials dissolve via electrochemical reactions. Chemical processes are often important, but the dissolution of metallic materials requires an oxidation of the metallic element in order to render it soluble in a liquid phase. In fact, there are four requirements for corrosion an anode (where oxidation of the metal occurs), a cathode (where reduction of a different species occurs), an electrolytic path for ionic conduction between the two reaction sites, and an electrical path for electron conduction between the reaction sites. These requirements are illustrated schematically in Fig. 1. [Pg.2]

Mn02 has a number of uses in chemical processes as an oxidizing agent, and it is also used in dry cell and alkaline batteries. In both cases the anode is made of zinc. The anode reaction (oxidation) and cathode reaction (reduction) are as follows for an alkaline cell ... [Pg.427]


See other pages where Cathode, chemical reduction is mentioned: [Pg.249]    [Pg.125]    [Pg.28]    [Pg.303]    [Pg.419]    [Pg.105]    [Pg.255]    [Pg.129]    [Pg.659]    [Pg.283]    [Pg.128]    [Pg.547]    [Pg.134]    [Pg.305]    [Pg.329]    [Pg.343]    [Pg.145]    [Pg.325]    [Pg.90]    [Pg.186]    [Pg.98]    [Pg.283]    [Pg.311]    [Pg.1541]    [Pg.203]    [Pg.235]   


SEARCH



Cathode reduction

Cathodic reduction

Chemical reduction

© 2024 chempedia.info