Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reaction steps adsorption

A heterogeneous catalytic reaction involves adsorption of reactants from a fluid phase onto a solid surface, surface reaction of adsorbed species, and desorption of products into the fluid phase. Clearly, the presence of a catalyst provides an alternative sequence of elementary steps to accomplish the desired chemical reaction from that in its absence. If the energy barriers of the catalytic path are much lower than the barrier(s) of the noncatalytic path, significant enhancements in the reaction rate can be realized by use of a catalyst. This concept has already been introduced in the previous chapter with regard to the Cl catalyzed decomposition of ozone (Figure 4.1.2) and enzyme-catalyzed conversion of substrate (Figure 4.2.4). A similar reaction profile can be constructed with a heterogeneous catalytic reaction. [Pg.133]

Overview In many industrial reactions, the overall rate of reaction is limited by the rate of mass transfer of reactants between the bulk fluid and the catalytic surface. By mas,s transfer, we mean any proces.s in which diffusion plays a role. In the rate laws and catalytic reaction steps described in Chapter 10 (diffusion, adsorption, surface reaction, desorption, and diffusion), we neglected the diffusion steps by saying we were operating under conditions where these steps are fast when compared to the other steps and thus could be neglected. We now examine the assumption that diffusion can be neglected. In this chapter we consider the external resistance to diffusion, and in the next chapter we consider internal resistance to diffusion. [Pg.757]

Most catalytic reactions consist of at least four elementary reaction steps adsorption, dissociation, association, and desorption. This is illustrated for the oxidation of CO... [Pg.212]

As with the other surface reactions discussed above, the steps m a catalytic reaction (neglecting diffiision) are as follows the adsorption of reactant molecules or atoms to fomi bound surface species, the reaction of these surface species with gas phase species or other surface species and subsequent product desorption. The global reaction rate is governed by the slowest of these elementary steps, called the rate-detemiming or rate-limiting step. In many cases, it has been found that either the adsorption or desorption steps are rate detemiining. It is not surprising, then, that the surface stmcture of the catalyst, which is a variable that can influence adsorption and desorption rates, can sometimes affect the overall conversion and selectivity. [Pg.938]

In the case of coupled heterogeneous catalytic reactions the form of the concentration curves of analytically determined gaseous or liquid components in the course of the reaction strongly depends on the relation between the rates of adsorption-desorption steps and the rates of surface chemical reactions. This is associated with the fact that even in the case of the simplest consecutive or parallel catalytic reaction the elementary steps (adsorption, surface reaction, and desorption) always constitute a system of both consecutive and parallel processes. If the slowest, i.e. ratedetermining steps, are surface reactions of adsorbed compounds, the concentration curves of the compounds in bulk phase will be qualitatively of the same form as the curves typical for noncatalytic consecutive (cf. Fig. 3b) or parallel reactions. However, anomalies in the course of bulk concentration curves may occur if the rate of one or more steps of adsorption-desorption character becomes comparable or even significantly lower then the rates of surface reactions, i.e. when surface and bulk concentration are not in equilibrium. [Pg.13]

The simplest case to be analyzed is the process in which the rate of one of the adsorption or desorption steps is so slow that it becomes itself rate determining in overall transformation. The composition of the reaction mixture in the course of the reaction is then not determined by kinetic, but by thermodynamic factors, i.e. by equilibria of the fast steps, surface chemical reactions, and the other adsorption and desorption processes. Concentration dependencies of several types of consecutive and parallel (branched) catalytic reactions 52, 53) were calculated, corresponding to schemes (Ila) and (lib), assuming that they are controlled by the rate of adsorption of either of the reactants A and X, desorption of any of the products B, C, and Y, or by simultaneous desorption of compounds B and C. [Pg.13]

Irreversible Unimolecular Reactions. Consider the irreversible catalytic reaction A P of Example 10.1. There are three kinetic steps adsorption of A, the surface reaction, and desorption of P. All three of these steps must occur at exactly the same rate, but the relative magnitudes of the three rate constants, ka, and kd, determine the concentration of surface species. Suppose that ka is much smaller than the other two rate constants. Then the surface sites will be mostly unoccupied so that [S] Sq. Adsorption is the rate-controlling step. As soon as a molecule of A is absorbed it reacts to P, which is then quickly desorbed. If, on the other hand, the reaction step is slow, the entire surface wiU be saturated with A waiting to react, [ASJ Sq, and the surface reaction is rate-controlling. Finally, it may be that k is small. Then the surface will be saturated with P waiting to desorb, [PS] Sq, and desorption is rate-controlling. The corresponding forms for the overall rate are ... [Pg.358]

Adsorption of reactants on the surface of the catalyst is the first step in every reaction of heterogeneous catalysis. Flere we focus on gases reacting on solid catalysts. Although we will deal with the adsorption of gases in a separate chapter, we need to discuss the relationship between the coverage of a particular gas and its partial pressure above the surface. Such relations are called isotherms, and they form the basis of the kinetics of catalytic reactions. [Pg.53]

In drafting a catalytic cycle as in Eqs. (132)-(135) we naturally have to ensure that the reaction steps are thermodynamically and stoichiometrically consistent. For instance, the number of sites consumed in the adsorption and dissociation steps must be equal to the number of sites liberated in the formation and desorption steps, to fulfill the criterion that a catalyst is unaltered by the catalytic cycle. [Pg.57]

Unraveling catalytic mechanisms in terms of elementary reactions and determining the kinetic parameters of such steps is at the heart of understanding catalytic reactions at the molecular level. As explained in Chapters 1 and 2, catalysis is a cyclic event that consists of elementary reaction steps. Hence, to determine the kinetics of a catalytic reaction mechanism, we need the kinetic parameters of these individual reaction steps. Unfortunately, these are rarely available. Here we discuss how sticking coefficients, activation energies and pre-exponential factors can be determined for elementary steps as adsorption, desorption, dissociation and recombination. [Pg.267]

Surface faceting may be particularly significant in chiral heterogeneous catalysis, particularly in the N i/P-ketoester system. The adsorption of tartaric add and glutamic acid onto Ni is known to be corrosive and it is also established that modifiers are leached into solution during both the modification and the catalytic reaction [28]. The preferential formation of chiral step-kink arrangements by corrosive adsorption could lead to catalytically active and enantioselective sites at step-kinks with no requirement for the chiral modifier to be present on the surface. [Pg.18]

Note the similarity of this expression to that for 9a, derived by the Langmuir adsorption isotherm. (ES)/(E0) plays a role analogous to 04, while S0 plays a role akin to the gas pressure. Although the expression is formally similar, we do not mean to imply that the two types of catalytic reactions proceed by similar molecular steps. [Pg.228]

The mechanism of any catalytic reaction may be divided in a number of steps adsorption of at least one reactant, surface interactions between reactants, desorption of the products, etc. Each of these steps is associated with a modification of the enthalpy of the system. But the total energy released, or absorbed, during all successive steps of the actual reaction... [Pg.237]

The adsorption of at least one reactant is the first step of the mechanism of any catalytic reaction. This step is followed by surface interactions between adsorbed species or between a gaseous reactant and adsorbed species. In many cases, these interactions may be detected by the successive adsorptions of the reactants in different sequences. Heat-flow microcalorimetry can be used with profit for such studies (19). [Pg.246]

Heat-flow microcalorimetry may be used, therefore, not only to detect, by means of adsorption sequences, the different surface interactions between reactants which constitute, in favorable cases, the steps of probable reaction mechanisms, but also to determine the rates of these surface processes. The comparison of the adsorption or interaction rates, deduced from the thermograms recorded during an adsorption sequence, is particularly reliable, because the arrangement of the calorimetric cells remains unchanged during all the steps of the sequence. Moreover, it should be remembered that the curves on Fig. 28 represent the adsorption or interaction rates on a very small fraction of the catalyst surface which is, very probably, active during the catalytic reaction (Table VI). It is for these... [Pg.252]

Moreover, the use of heat-flow calorimetry in heterogeneous catalysis research is not limited to the measurement of differential heats of adsorption. Surface interactions between adsorbed species or between gases and adsorbed species, similar to the interactions which either constitute some of the steps of the reaction mechanisms or produce, during the catalytic reaction, the inhibition of the catalyst, may also be studied by this experimental technique. The calorimetric results, compared to thermodynamic data in thermochemical cycles, yield, in the favorable cases, useful information concerning the most probable reaction mechanisms or the fraction of the energy spectrum of surface sites which is really active during the catalytic reaction. Some of the conclusions of these investigations may be controlled directly by the calorimetric studies of the catalytic reaction itself. [Pg.260]

Figure 1.1 Schematic representation of a well known catalytic reaction, the oxidation of carbon monoxide on noble metal catalysts CO + Vi 02 —> C02. The catalytic cycle begins with the associative adsorption of CO and the dissociative adsorption of 02 on the surface. As adsorption is always exothermic, the potential energy decreases. Next CO and O combine to form an adsorbed C02 molecule, which represents the rate-determining step in the catalytic sequence. The adsorbed C02 molecule desorbs almost instantaneously, thereby liberating adsorption sites that are available for the following reaction cycle. This regeneration of sites distinguishes catalytic from stoichiometric reactions. Figure 1.1 Schematic representation of a well known catalytic reaction, the oxidation of carbon monoxide on noble metal catalysts CO + Vi 02 —> C02. The catalytic cycle begins with the associative adsorption of CO and the dissociative adsorption of 02 on the surface. As adsorption is always exothermic, the potential energy decreases. Next CO and O combine to form an adsorbed C02 molecule, which represents the rate-determining step in the catalytic sequence. The adsorbed C02 molecule desorbs almost instantaneously, thereby liberating adsorption sites that are available for the following reaction cycle. This regeneration of sites distinguishes catalytic from stoichiometric reactions.
In this chapter, we have discussed the application of metal oxides as catalysts. Metal oxides display a wide range of properties, from metallic to semiconductor to insulator. Because of the compositional variability and more localized electronic structures than metals, the presence of defects (such as comers, kinks, steps, and coordinatively unsaturated sites) play a very important role in oxide surface chemistry and hence in catalysis. As described, the catalytic reactions also depend on the surface crystallographic structure. The catalytic properties of the oxide surfaces can be explained in terms of Lewis acidity and basicity. The electronegative oxygen atoms accumulate electrons and act as Lewis bases while the metal cations act as Lewis acids. The important applications of metal oxides as catalysts are in processes such as selective oxidation, hydrogenation, oxidative dehydrogenation, and dehydrochlorination and destructive adsorption of chlorocarbons. [Pg.57]

Reaction Steps 8.6 to 8.8 are also relevant to the catalytic reaction of methanol in a flow of CH3OH, although the steps 8.5 and 8.8 cannot be separated anymore. The net reaction for dissociative adsorption of methanol is expressed by ... [Pg.241]

Carbon monoxide oxidation is a relatively simple reaction, and generally its structurally insensitive nature makes it an ideal model of heterogeneous catalytic reactions. Each of the important mechanistic steps of this reaction, such as reactant adsorption and desorption, surface reaction, and desorption of products, has been studied extensively using modem surface-science techniques.17 The structure insensitivity of this reaction is illustrated in Figure 10.4. Here, carbon dioxide turnover frequencies over Rh(l 11) and Rh(100) surfaces are compared with supported Rh catalysts.3 As with CO hydrogenation on nickel, it is readily apparent that, not only does the choice of surface plane matters, but also the size of the active species.18-21 Studies of this system also indicated that, under the reaction conditions of Figure 10.4, the rhodium surface was covered with CO. This means that the reaction is limited by the desorption of carbon monoxide and the adsorption of oxygen. [Pg.340]

The relative simplicity of CO oxidation makes this reaction an ideal model system of a heterogeneous catalytic reaction. Each of the mechanistic steps (adsorption and desorption of the reactants, surface reaction, and desorption of products) has been probed extensively with surface science techniques, as has the interaction between O2 and CO " . These studies have provided essential information necessary for understanding the elementary processes which occur in CO oxidation. [Pg.161]


See other pages where Catalytic reaction steps adsorption is mentioned: [Pg.62]    [Pg.247]    [Pg.3035]    [Pg.3034]    [Pg.43]    [Pg.211]    [Pg.104]    [Pg.2]    [Pg.17]    [Pg.18]    [Pg.39]    [Pg.81]    [Pg.68]    [Pg.65]    [Pg.95]    [Pg.272]    [Pg.193]    [Pg.110]    [Pg.55]    [Pg.172]    [Pg.190]    [Pg.238]    [Pg.341]    [Pg.52]    [Pg.198]    [Pg.242]    [Pg.392]    [Pg.181]   
See also in sourсe #XX -- [ Pg.43 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Adsorption reaction

Catalytic reaction steps

Catalytic reaction steps dissociative adsorption

Step reactions

© 2024 chempedia.info