Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic methanol carbonylation iodide salts

Iodide and acetate salts increase the rate of reaction of Li [1] with CH3I at 25 °C in acetic acid. The effects of water, LiBF4, and other additives are also reported. Iodide salts also promote catalytic methanol carbonylation at low water concentrations. In the case of Lil promoter, lithium acetate is produced. The promotional effects of iodide and acetate on both the model and catalytic systems are rationalized in terms of iodide or acetate coordination to (1) to yield five-coordinate RhI anions as reactive intermediates for rate-determining reactions with CH3I.11... [Pg.144]

Pseudo-first-order rate constants for carbonylation of [MeIr(CO)2l3]" were obtained from the exponential decay of its high frequency y(CO) band. In PhCl, the reaction rate was found to be independent of CO pressure above a threshold of ca. 3.5 bar. Variable temperature kinetic data (80-122 °C) gave activation parameters AH 152 (+6) kj mol and AS 82 (+17) J mol K The acceleration on addition of methanol is dramatic (e. g. by an estimated factor of 10 at 33 °C for 1% MeOH) and the activation parameters (AH 33 ( 2) kJ mol" and AS -197 (+8) J mol" K at 25% MeOH) are very different. Added iodide salts cause substantial inhibition and the results are interpreted in terms of the mechanism shown in Scheme 3.6 where the alcohol aids dissociation of iodide from [MeIr(CO)2l3] . This enables coordination of CO to give the tricarbonyl, [MeIr(CO)3l2] which undergoes more facile methyl migration (see below). The behavior of the model reaction closely resembles the kinetics of the catalytic carbonylation system. Similar promotion by methanol has also been observed by HP IR for carbonylation of [MeIr(CO)2Cl3] [99]. In the same study it was reported that [MeIr(CO)2Cl3]" reductively eliminates MeCl ca. 30 times slower than elimination of Mel from [MeIr(CO)2l3] (at 93-132 °C in PhCl). [Pg.135]

The efficacy of an iridium/iodide catalyst for methanol carbonylation was discovered by Monsanto at the same time as their development of the process using the rhodium/iodide catalyst [5]. Mechanistic investigations by Forster employing in situ HPIR spectroscopy revealed additional complexity compared to the rhodium system [115]. In particular, the carbonylation rate and catalyst speciation were found to show a more complicated dependence on process variables, and three distinct regimes of catalyst behavior were identified. At relatively low concentrations of Mel, H20, and ionic iodide, a neutral iridium (I) complex [Ir(CO)sI] was found to dominate, and the catalytic reaction was inhibited by increasing the CO partial pressure. Addition of small amounts of a quaternary ammonium iodide salt caused the dominant iridium species to become an Ir(III) methyl complex, [Ir(CO)2l3Me]. Under these conditions, the rate... [Pg.23]

Carbonylation of methanol catalyzed by soluble Group IX transition metal complexes remains the dominant method for the commercial production of acetic acid. The Monsanto process stands as one of the major success stories of homogeneous catalysis, and for three decades it was the preferred technology because of the excellent activity and selectivity of the catalyst. It has been demonstrated by workers at Celanese, however, that addition of iodide salts can significantly benefit the process by improving the catalytic reaction rate and catalyst stability at low water concentrations. Many attempts have been made to enhance the activity of... [Pg.38]

Rhodium-catalyzed carbonylation of methanol is known as the Monsanto process, which has been studied extensively. From the reaction mechanism aspect, the study of kinetics has proved that the oxidative addition of methyl iodide to the [Rh(CO)2l2] is the rate-determining step of the catalytic cycle. It was also observed that acetyl iodide readily adds to [Rh(CO)2l2], indicating that the acetyl iodide must be scavenged by hydrolysis in order to drive the overall catalytic reaction forward. An alternative to sequential reductive elimination and the hydrolysis of acetyl iodide is the nucleophilic attack of water on the Rh acetyl complex and the production of acetic acid. The relative importance of these two alternative pathways has not yet been fully determined, although the catalytic mechanism is normally depicted as proceeding via the reductive elimination of acetyl iodide from the rhodium center. The addition of iodide salts, especially lithium iodide, can realize the reaction run at lower water concentrations thus, byproduct formation via the water gas shift reaction is reduced, subsequently improving raw materials consumption and reducing downstream separation. In addition to the experimental studies of the catalytic mechanism, theoretical studies have also been carried out to understand the reaction mechanism [17-20]. [Pg.14]

A particularly broad potential for application in syngas reactions is shown by ruthenium carbonyl clusters. Iodide promoters seem to favor ethylene glycol (155,156) the formation of [HRu3(CO),]- and [Ru(CO)3I3]- was observed under the catalytic conditions. These species possibly have a synergistic effect on the catalytic process. Imidazole promoters have been found to increase the catalytic activity for both methanol and ethylene glycol formation (158-160). Quaternary phosphonium salt melts have been used as solvents in these cases the anion [HRu3(CO)u] was detected in the mixture (169). Cobalt iodide as cocatalyst in molten [PBu4]Br directs the catalytic synthesis toward acetic add (163). With... [Pg.75]


See other pages where Catalytic methanol carbonylation iodide salts is mentioned: [Pg.186]    [Pg.25]    [Pg.399]    [Pg.179]    [Pg.104]    [Pg.362]    [Pg.6]    [Pg.30]    [Pg.496]    [Pg.434]    [Pg.165]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Carbonyl iodides

Catalytic carbonylation

Iodides carbonylation

Methanol carbonylations

Methanol, catalytic carbonylation

© 2024 chempedia.info