Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic bimetallic

There are several photocatalysts mimicking hydrogenase activity that are not based on metalloporphyrin systems. Among them there are mixed-valence complexes of rhodium or iridium, [41] as well as complex systems encompassing photosensitizers (eg ruthenium complexes) attached to a catalytic bimetallic centre [43], The design of more sophisticated systems approaches that of photosynthetic processes [44],... [Pg.200]

As mentioned in Sect. 1, the field of cooperative or synergistic behaviour is very broad and this chapter is certainly not the appropriate place to survey the area. Having said that, mention was made of Jacobsen s quadratic systems in Sect. 2.2.1 although there are some dissimilarities with monometallic CBER. Other groups of reactions which have attracted this author s attention are the Pt-Sn hydroformylation systems and the Ir-Ru Cativa process for acetic acid [87]. A common theme in the Pt-Sn and Ir-Ru systems appears to be the need of the second metal (Sn or Ru) in order to abstract a halogen from the first metal, thereby freeing a coordination site. Catalytic bimetallic systems where a second metal is needed to abstract a halogen should, at some level, exhibit a bilinear term to reflect the abstraction. [Pg.217]

M. Lin, T. Hogan, A. Sen, A highly catalytic bimetallic system for the low-temperature selective oxidation of methane and lower alkanes with dioxygen as the oxidant, J. Am. Chem. Soc. 119 (1997) 6048-6053. [Pg.185]

To proceed with the topic of this section. Refs. 250 and 251 provide oversights of the application of contemporary surface science and bonding theory to catalytic situations. The development of bimetallic catalysts is discussed in Ref. 252. Finally, Weisz [253] discusses windows on reality the acceptable range of rates for a given type of catalyzed reaction is relatively narrow. The reaction becomes impractical if it is too slow, and if it is too fast, mass and heat transport problems become limiting. [Pg.729]

Although the rationalization of the reactivity and selectivity of this particular substrate is distinct from that for chiral ketals 92-95, it still agrees with the mechanistic conclusions gained throughout the study of Simmons-Smith cyclopropa-nations. StOl, the possibility of the existence of a bimetallic transition structure similar to v (see Fig. 3.5) has not been rigorously ruled out. No real changes in the stereochemical rationale of the reaction are required upon substitution of such a bimetallic transition structure. But as will be seen later, the effect of zinc iodide on catalytic cyclopropanations is a clue to the nature of highly selective reaction pathways. A similar but unexplained effect of zinc iodide on these cyclopro-panation may provide further information on the true reactive species. [Pg.115]

Bimetallic nanoparticles, either as alloys or as core-shell structures, exhibit unique electronic, optical and catalytic properties compared to pure metallic nanopartides [24]. Cu-Ag alloy nanoparticles were obtained through the simultaneous reduction of copper and silver ions again in aqueous starch matrix. The optical properties of these alloy nanopartides vary with their composition, which is seen from the digital photographs in Fig. 8. The formation of alloy was confirmed by single SP maxima which varied depending on the composition of the alloy. [Pg.131]

Sulfided bimetallic clusters which mimic the metal composition of commercial hydrodesulfurization (HDS) catalysts have been prepared and their homogeneous catalytic behavior studied. Reaction of thiophenol with [Mo2Co2(/z4-S)... [Pg.109]

Ferrocen-l,l -diylbismetallacycles are conceptually attractive for the development of bimetal-catalyzed processes for one particular reason the distance between the reactive centers in a coordinated electrophile and a coordinated nucleophile is self-adjustable for specific tasks, because the activation energy for Cp ligand rotation is very low. In 2008, Peters and Jautze reported the application of the bis-palladacycle complex 56a to the enantioselective conjugate addition of a-cyanoacetates to enones (Fig. 31) [74—76] based on the idea that a soft bimetallic complex capable of simultaneously activating both Michael donor and acceptor would not only lead to superior catalytic activity, but also to an enhanced level of stereocontrol due to a highly organized transition state [77]. An a-cyanoacetate should be activated by enolization promoted by coordination of the nitrile moiety to one Pd(II)-center, while the enone should be activated as an electrophile by coordination of the olefinic double bond to the carbophilic Lewis acid [78],... [Pg.159]

Ruthenium-copper and osmium-copper clusters (21) are of particular interest because the components are immiscible in the bulk (32). Studies of the chemisorption and catalytic properties of the clusters suggested a structure in which the copper was present on the surface of the ruthenium or osmium (23,24). The clusters were dispersed on a silica carrier (21). They were prepared by wetting the silica with an aqueous solution of ruthenium and copper, or osmium and copper, salts. After a drying step, the metal salts on the silica were reduced to form the bimetallic clusters. The reduction was accomplished by heating the material in a stream of hydrogen. [Pg.255]

Extended X-ray absorption fine structure (EXAFS) studies have been very useful for obtaining structural information on bimetallic cluster catalysts. The application to bimetallic systems is a particularly good one for illustrating the various factors which have an influence on EXAFS. Moreover, the applicability of EXAFS to this area has been very timely, in view of the enormous interest in bimetallic systems in both catalytic science and technology. [Pg.265]

The results of the EXAFS studies on supported bimetallic catalysts have provided excellent confirmation of earlier conclusions (21-24) regarding the existence of bimetallic clusters in these catalysts. Moreover, major structural features of bimetallic clusters deduced from chemisorption and catalytic data (21-24), or anticipated from considerations of the miscibility or surface energies of the components (13-15), received additional support from the EXAFS data. From another point of view, it can also be said that the bimetallic catalyst systems provided a critical test of the EXAFS method for investigations of catalyst structure (17). The application of EXAFS in conjunction with studies employing ( mical probes and other types of physical probes was an important feature of the work (25). [Pg.265]

The effect of precursor-support interactions on the surface composition of supported bimetallic clusters has been studied. In contrast to Pt-Ru bimetallic clusters, silica-supported Ru-Rh and Ru-Ir bimetallic clusters showed no surface enrichment in either metal. Metal particle nucleation in the case of the Pt-Ru bimetallic clusters is suggested to occtir by a mechanism in which the relatively mobile Pt phase is deposited atop a Ru core during reduction. On the other hand, Ru and Rh, which exhibit rather similar precursor support interactions, have similar surface mobilities and do not, therefore, nucleate preferentially in a cherry model configuration. The existence of true bimetallic clusters having mixed metal surface sites is verified using the formation of methane as a catalytic probe. An ensemble requirement of four adjacent Ru surface sites is suggested. [Pg.294]

Methanatlon Studies. Because the most effective way to determine the existence of true bimetallic clusters having mixed metal surface sites Is to use a demanding catalytic reaction as a surface probe, the rate of the CO methanatlon reaction was studied over each series of supported bimetallic clusters. Turnover frequencies for methane formation are shown In Fig. 2. Pt, Ir and Rh are all poor CO methanatlon catalysts In comparison with Ru which Is, of course, an excellent methanatlon catalyst. Pt and Ir are completely inactive for methanatlon In the 493-498K temperature range, while Rh shows only moderate activity. [Pg.300]

Attention has been given to the synthesis of bimetallic silver-gold clusters [71] due to their effective catalytic properties, resistance to poisoning, and selectivity [72]. Recently molecular materials with gold and silver nanoclusters and nanowires have been synthesized. These materials are considered to be good candidates for electronic nanodevices and biosensors [73]. [Pg.33]

Endo et al. [96] prepared AuPt, AuPd, and PtPd bimetallic nanoparticles with 2 nm in particle size in order to investigate catalytic activity for reduction of p-nitrophenol in water. The binary features of the nanoparticles were characterized by UV-Vis spectroscopic measurements. [Pg.62]

Surface composition and structure of bimetallic nanoparticles are crucially important for their catalytic property as well as their optical property. IR measurement of CO adsorbed on surface metals (CO-IR) is utilized for this purpose. CO is adsorbed on metals not only on-top sites but also in two-fold or three-fold sites, depending on the kinds of metals and their surface structures. The dramatical changes of wavenumber of adsorbed CO occurs depending on the binding structure [177-181]. [Pg.64]

Recently, however, the development of nanotechnology may provide the changes on the research and development of practical catalysts. As mentioned in the previous section we can now design and synthesize a metal nanoparticle with not only various sizes and shapes, but also with various combinations of elements and their locations. Thus, we can now design the synergetic effect of two elements. In the case of core/shell structured bimetallic nanoparticles, the shell element can provide a catalytic site and the core element can give an electronic effect (a ligand effect) on the shell element. Since only the atoms on the surface can be attached by substrates, the thickness of the shell should be an important factor to control the catalytic performance. [Pg.65]

In 1989, we developed colloidal dispersions of Pt-core/ Pd-shell bimetallic nanoparticles by simultaneous reduction of Pd and Pt ions in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) [15]. These bimetallic nanoparticles display much higher catalytic activity than the corresponding monometallic nanoparticles, especially at particular molecular ratios of both elements. In the series of the Pt/Pd bimetallic nanoparticles, the particle size was almost constant despite composition and all the bimetallic nanoparticles had a core/shell structure. In other words, all the Pd atoms were located on the surface of the nanoparticles. The high catalytic activity is achieved at the position of 80% Pd and 20% Pt. At this position, the Pd/Pt bimetallic nanoparticles have a complete core/shell structure. Thus, one atomic layer of the bimetallic nanoparticles is composed of only Pd atoms and the core is completely composed of Pt atoms. In this particular particle, all Pd atoms, located on the surface, can provide catalytic sites which are directly affected by Pt core in an electronic way. The catalytic activity can be normalized by the amount of substance, i.e., to the amount of metals (Pd + Pt). If it is normalized by the number of surface Pd atoms, then the catalytic activity is constant around 50-90% of Pd, as shown in Figure 13. [Pg.65]

Figure 13. Normalized catalytic activity (in mmol H2 per mmol surface Pd per s) as a function of metal composition of PVP-stabilized Pd/Pt bimetallic nanoparticles. The normalization was determined by the number of Pd atoms on the surface of the nanoparticle, assuming that Pd atoms exist selectively on the surface. (Reprinted from Ref. [48], 1993, with permission from Royal Society of Chemistry.)... Figure 13. Normalized catalytic activity (in mmol H2 per mmol surface Pd per s) as a function of metal composition of PVP-stabilized Pd/Pt bimetallic nanoparticles. The normalization was determined by the number of Pd atoms on the surface of the nanoparticle, assuming that Pd atoms exist selectively on the surface. (Reprinted from Ref. [48], 1993, with permission from Royal Society of Chemistry.)...

See other pages where Catalytic bimetallic is mentioned: [Pg.520]    [Pg.797]    [Pg.520]    [Pg.797]    [Pg.525]    [Pg.178]    [Pg.182]    [Pg.223]    [Pg.115]    [Pg.123]    [Pg.227]    [Pg.114]    [Pg.49]    [Pg.725]    [Pg.201]    [Pg.312]    [Pg.312]    [Pg.318]    [Pg.516]    [Pg.54]    [Pg.511]    [Pg.639]    [Pg.639]    [Pg.125]    [Pg.37]    [Pg.38]    [Pg.49]    [Pg.49]    [Pg.50]    [Pg.50]    [Pg.64]    [Pg.65]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Bimetallic catalyst catalytic reforming

Bimetallic catalytic data

Bimetallic catalytic reduction

Bimetallic catalytic system

© 2024 chempedia.info