Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts interacting supports

In many cases there is an interaction between the carrier and the active component of the catalyst so that the character of the active surface will change. For example, the electronic character of the supported catalyst may be influenced by the transfer of electrons across the catalyst-carrier interface. In some cases the carrier itself has a catalytic activity for the primary reaction, an intermediate reaction, or a subsequent reaction, and a dual-function catalyst is thereby obtained. Materials of this type are widely employed in reforming processes. There are other cases where the interaction of the catalyst and support are much more subtle and difficult to label. For example, the crystal size and structure of supported metal catalysts as well as the manner in which the metal is dispersed can be influenced by the nature of the support material. [Pg.200]

From the work reported in literature it can be thus concluded that there will be various forms of carbonaceous species, which vary in reactivity, that exist on the catalyst or support during FTS. Some forms of this carbon are active (atomic surface carbide and CHX species) and even considered as intermediate species in FTS. However, it is also clear that especially during extended runs there may be a build up/transformation to less reactive forms of carbon (e.g., polymeric carbon). The amounts of these species may be small, but depending on their location, they may be responsible for a part of deactivation observed on cobalt-based FTS catalysts. The electronic interaction of carbon with the catalyst surface may also result in decreased activity. [Pg.67]

The previous EXAFS studies were restricted to supported catalysts. Furthermore, the structural properties determined by MES and EXAFS were mainly related to the HDS activity and not to the other catalytic functions. Presently, we will report EXAFS (both Mo and Co), MES, HDS and hydrogenation activity studies of unsupported Co-Mo catalysts. These catalysts have been prepared by the homogeneous sulfide precipitation method (l8) which permits large amounts of Co to be present as Co-Mo-S. The choice of unsupported catalysts allows one to avoid some of the effects which inherently will be present in alumina supported catalysts, where support interactions may result in both structural and catalytic complexities. [Pg.76]

Carbon support plays a vital role in the preparation and performance of catalysts since it influences the shape, size and dispersion of catalyst particles as well as the electronic interactions between catalyst and support [154,155]. [Pg.377]

Electrocatalyst see also specific catalysts adsorbate-support interactions, 30 273-279 adsorption, 30 240-264 isotherms, 30 241-243 bimetallic activity, 30 275... [Pg.94]

This latter interpretation would mean that with the approach depicted in Fig. 10, the catalyst itself could be monitored. The authors reported that the silica-supported Nafion could not be observed in the beginning of their experiments and appeared in the spectra only after the catalyst interacted with octanol. This observation may indicate that the octyl groups promote the sticking of the catalyst particles onto the ATR probe, within the evanescent field. However, the example also shows that this approach may not be without problems, because it depends on the adsorption of the particles from the slurry reactor onto the ATR element. This process is accompanied by the adsorption of molecules on the catalyst surface and complicates the analysis. More important, as also indicated by the work of Mul et al. (74). this adsorption depends on the surface properties of the catalyst particles and the ATR element. These properties are prone to change as a function of conversion in a batch process and are therefore hardly predictable. [Pg.244]

The experimental results described in this review support the concept that, in certain reactions of the redox type, the interaction between catalysts and supports and its effect on catalytic activity are determined by the electronic properties of metals and semiconductors, taking into account the electronic effects in the boundary layer. In particular, it has been shown that electronic effects on the activity of the catalysts, as expressed by changes of activation energies, are much larger for inverse mixed catalysts (semiconductors supported and/or promoted by metals) than for the more conventional and widely used normal mixed catalysts (metals promoted by semiconductors). The effects are in the order of a few electron volts with inverse systems as opposed to a few tenths of an electron volt with normal systems. This difference is readily understandable in terms of the different magnitude of, and impacts on electron concentrations in metals versus semiconductors. [Pg.21]

Vannice (232) measured turnover numbers for methanation on a variety of well-characterized palladium catalysts. The supported catalysts were all more active than unsupported palladium (Pd black) and PdHY was intermediate between Pd/Si02 and Pd/Al203 in specific activity (see Table VII). As is evident from the data there is no obvious correlation betwen particle size and turnover number. It was therefore suggested that the enhanced activity of various supported catalysts was due to a metal-support interaction. Figureas et al. (105) also found good evidence for a support effect during benzene hydrogenation studies. In this case the palladium zeolite... [Pg.51]

The surface properties of carbon play an important role in the dis persion and the sintering behavior of supported catalyst. The study of iron-phthalocyanine is of particularly interest for the investigation of catalyst-carbon support interactions. The coalescence of PcFe particles on graphitized carbon is considerably lowered by the... [Pg.327]

The efficiency and selectivity of a supported metal catalyst is closely related to the dispersion and particle size of the metal component and to the nature of the interaction between the metal and the support. For a particular metal, catalytic activity may be varied by changing the metal dispersion and the support thus, the method of synthesis and any pre-treatment of the catalyst is important in the overall process of catalyst evaluation. Supported metal catalysts have traditionally been prepared by impregnation techniques that involve treatment of a support with an aqueous solution of a metal salt followed by calcination (4). In the Fe/ZSM-5 system, the decomposition of the iron nitrate during calcination produces a-Fe2(>3 of relatively large crystallite size (>100 X). This study was initiated in an attempt to produce highly-dispersed, thermally stable supported metal catalysts that are effective for synthesis gas conversion. The carbonyl Fe3(CO) was used as the source of iron the supports used were the acidic zeolites ZSM-5 and mordenite and the non-acidic, larger pore zeolite, 13X. [Pg.398]


See other pages where Catalysts interacting supports is mentioned: [Pg.253]    [Pg.338]    [Pg.117]    [Pg.117]    [Pg.323]    [Pg.346]    [Pg.192]    [Pg.158]    [Pg.159]    [Pg.163]    [Pg.207]    [Pg.12]    [Pg.54]    [Pg.214]    [Pg.205]    [Pg.393]    [Pg.147]    [Pg.209]    [Pg.253]    [Pg.39]    [Pg.193]    [Pg.12]    [Pg.24]    [Pg.114]    [Pg.31]    [Pg.112]    [Pg.70]    [Pg.515]    [Pg.178]    [Pg.327]    [Pg.96]    [Pg.207]    [Pg.1498]    [Pg.155]    [Pg.171]    [Pg.376]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Catalysts interactions

Support interaction

Supported interactions

© 2024 chempedia.info