Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst propene, oxidation

Epoxide Rearrangement.- The rearrangement of epoxides in the presence of solid catalysts is strongly dependent on the nature of the catalysts. Propene oxide in the presence of solid catalysts containing acidic conetres, like Si02-Mg0, Mg2(P0 )2 is... [Pg.148]

Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]

As a new kind of carbon materials, carbon nanofilaments (tubes and fibers) have been studied in different fields [1]. But, until now far less work has been devoted to the catalytic application of carbon nanofilaments [2] and most researches in this field are focused on using them as catalyst supports. When most of the problems related to the synthesis of large amount of these nanostructures are solved or almost solved, a large field of research is expected to open to these materials [3]. In this paper, CNF is tested as a catalyst for oxidative dehydrogenation of propane (ODP), which is an attractive method to improve propene productivity [4]. The role of surface oxygen annplexes in catalyzing ODP is also addressed. [Pg.745]

In the following scheme, an oxidation pathway for propane and propene is proposed. This mechanism, that could be generalized to different hansition metal oxide catalysts, implies that propene oxidation can follow the allylic oxidation way, or alternatively, the oxidation way at C2, through acetone. The latter easily gives rise to combustion, because it can give rise to enolization and C-C bond oxidative breaking. This is believed to be the main combustion way for propene over some catalysts, while for other catalysts acrolein overoxidation could... [Pg.488]

Examples for necessary process improvements through catalyst research are the development of one-step processes for a number of bulk products like acetaldehyde and acetic acid (from ethane), phenol (from benzene), acrolein (from propane), or allyl alcohol (from acrolein). For example, allyl alcohol, a chemical which is used in the production of plasticizers, flame resistors and fungicides, can be manufactured via gas-phase acetoxylation of propene in the Hoechst [1] or Bayer process [2], isomerization of propene oxide (BASF-Wyandotte), or by technologies involving the alkaline hydrolysis of allyl chloride (Dow and Shell) thereby producing stoichiometric amounts of unavoidable by-products. However, if there is a catalyst... [Pg.167]

Table 8.6. Kinetic parameters of CO, propane and propene oxidation over M/A1203 and M/Ce02—A1203 catalysts (M = Pt, Pd or Rh)... Table 8.6. Kinetic parameters of CO, propane and propene oxidation over M/A1203 and M/Ce02—A1203 catalysts (M = Pt, Pd or Rh)...
Catalysis is a special type of closed-sequence reaction mechanism (Chapter 7). In this sense, a catalyst is a species which is involved in steps in the reaction mechanism, but which is regenerated after product formation to participate in another catalytic cycle. The nature of the catalytic cycle is illustrated in Figure 8.1 for the catalytic reaction used commercially to make propene oxide (with Mo as the catalyst), cited above. [Pg.177]

In an attempt to quantify the relationship between the TiOOH groups and the yield of propene oxide from the extinction coefficients of the latter s 1409-and 1493-cm-1 bands, it was determined that 0.6 mol of the epoxide formed per mole of framework Ti center in the molecular sieve. That is, at least 60% of all framework Ti (80% of the surface-exposed Ti) is converted to TiOOH upon reaction with H202. The consumption of the TiOOH species during the oxygen insertion into propene was also independently confirmed by the loss in intensity of its LMCT band at 360 nm when the catalyst was brought in contact with propene at room temperature (Fig. 50). [Pg.153]

The proposed Re6 cluster (8) with terminal and bridged-oxygen atoms acts as a catalytic site for selective propene oxidation under a mixture of propene, Oz and NH3. When the Re6 catalyst is treated with propene and Oz at 673 K, the cluster is transformed back to the inactive [Re04] monomers (7), reversibly. This is the reason why the catalytic activity is lost in the absence of ammonia (Table 8.5). Note that NH3, which is not involved in the reaction equation for the acrolein formation (C3H6+02->CH2=CHCH0+H20) is a prerequisite for the catalytic reaction as it produces the active cluster structure under the catalytic reaction conditions. [Pg.248]

In a subsequent paper, the authors developed another type of silica-supported dendritic chiral catalyst that was anticipated to suppress the background racemic reaction caused by the surface silanol groups, and to diminish the multiple interactions between chiral groups at the periphery of the dendrimer 91). The silica-supported chiral dendrimers were synthesized in four steps (1) grafting of an epoxide linker on a silica support, (2) immobilization of the nth generation PAMAM dendrimer, (3) introduction of a long alkyl spacer, and (4) introduction of chiral auxiliaries at the periphery of the dendrimer with (IR, 2R)-( + )-l-phenyl-propene oxide. Two families of dendritic chiral catalysts with different spacer lengths were prepared (nG-104 and nG-105). [Pg.144]

Laboratory studies have indicated an increasing number of further processes for which iron oxides may be used as catalysts. A sodium promoted iron oxide on a support of Si02 catalyses the gas phase oxidation (377-427 °C) by nitrous oxide, of pro-pene to propene oxide (Duma and Honicke, 2000). Ferrihydrite or akaganeite can be used to catalyse the reduction (at 55-75 °C) by hydrazine, of aromatic nitro compounds to aromatic amines (which are the starting materials for a huge range of chemicals) these Fe oxides have the potential to provide a safe and economical pathway to the production of these important organics (Lauwiner et al., 1998). [Pg.520]

Ordering of vacancies also plays a key role in selective oxidation catalysis over perovskite-based catalysts such as CaMnOs oxides. CaMnOs has a CaTiOs (AMO3) perovskite structure which is made up of cations coordinated to 12 0 anions. They, in turn, are connected to corner-sharing MoOe octahedra. CaMnOs was used as a model catalyst on a laboratory scale by Thomas et al (1982) in propene oxidation to benzene and 2-methyl propene to paraxylene. In such reactions the compounds are found to undergo reduction to form anion-deficient metastable phases of the type CaMnOs-x where 0 < x < 0.5, forming several distinct phases. [Pg.128]

The oxidation of propene to propene oxide, a strategic compound in the manufacture of polyurethane and polyols, displays very low selectivity with many catalysts, unlike the epoxidation of ethane, whose selectivity may be as high as 90% when a supported Ag catalyst is used [235]. Lambert et al. recently showed that selectivities of about 50% can be achieved at 0.25% conversion by supported catalysts, although selectivity declines when the conversion increases [236]. [Pg.479]

The formation of propene oxide as a side product of the acrolein formation or dimerization reactions is reported by many authors. Daniel et al. [95,96] demonstrated that propene oxide is formed by surface-initiated homogeneous reactions which may involve peroxy radical intermediates. The epoxidation is increased by a large void fraction in the catalyst bed or a large postcatalytic volume. In view of these results, the findings of Centola et al. [84] are understandable, as the wall of the empty reactor may have been sufficiently active to initiate the reaction. [Pg.136]

The complex role of the catalyst is separately discussed in Sect. 3, where a great many of the references concern propene oxidation studies. [Pg.140]


See other pages where Catalyst propene, oxidation is mentioned: [Pg.211]    [Pg.485]    [Pg.485]    [Pg.488]    [Pg.488]    [Pg.94]    [Pg.169]    [Pg.174]    [Pg.30]    [Pg.84]    [Pg.105]    [Pg.67]    [Pg.125]    [Pg.315]    [Pg.50]    [Pg.49]    [Pg.60]    [Pg.272]    [Pg.269]    [Pg.155]    [Pg.428]    [Pg.122]    [Pg.130]    [Pg.132]    [Pg.355]    [Pg.201]    [Pg.207]    [Pg.428]    [Pg.493]    [Pg.286]    [Pg.64]    [Pg.26]    [Pg.136]   
See also in sourсe #XX -- [ Pg.455 ]




SEARCH



Oxidation propene

Propene oxide

© 2024 chempedia.info