Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst principle

C. M. Starks and C. Liotta, Phase Transfer Catalysts, Principles and Techniques, Academic Press, New York, 1978. [Pg.534]

Manufacturer Type Oxidation Catalyst Principle of CO2 Range... [Pg.301]

Bhatia, S., 1989. Zeolite Catalysts Principles and Applications. CRC Press. [Pg.420]

As on previous occasions, the reader is reminded that no very extensive coverage of the literature is possible in a textbook such as this one and that the emphasis is primarily on principles and their illustration. Several monographs are available for more detailed information (see General References). Useful reviews are on future directions and anunonia synthesis [2], surface analysis [3], surface mechanisms [4], dynamics of surface reactions [5], single-crystal versus actual catalysts [6], oscillatory kinetics [7], fractals [8], surface electrochemistry [9], particle size effects [10], and supported metals [11, 12]. [Pg.686]

Abstract. This paper presents results from quantum molecular dynamics Simula tions applied to catalytic reactions, focusing on ethylene polymerization by metallocene catalysts. The entire reaction path could be monitored, showing the full molecular dynamics of the reaction. Detailed information on, e.g., the importance of the so-called agostic interaction could be obtained. Also presented are results of static simulations of the Car-Parrinello type, applied to orthorhombic crystalline polyethylene. These simulations for the first time led to a first principles value for the ultimate Young s modulus of a synthetic polymer with demonstrated basis set convergence, taking into account the full three-dimensional structure of the crystal. [Pg.433]

In principle, Chen, given the flux relations there is no difficulty in constructing differencial equations to describe the behavior of a catalyst pellet in steady or unsteady states. In practice, however, this simple procedure is obstructed by the implicit nature of the flux relations, since an explicit solution of usefully compact form is obtainable only for binary mixtures- In steady states this impasse is avoided by using certain, relations between Che flux vectors which are associated with the stoichiometry of Che chemical reaction or reactions taking place in the pellet, and the major part of Chapter 11 is concerned with the derivation, application and limitations of these stoichiometric relations. Fortunately they permit practicable solution procedures to be constructed regardless of the number of substances in the reaction mixture, provided there are only one or two stoichiomeCrically independent chemical reactions. [Pg.5]

In recent years the analogy between the Friedel-Crafts aeylation reaction and various nitrating systems, partieularly those in which Lewis aeids aet as catalysts, has been stressed, but this elassifieation adds nothing new in principle. [Pg.2]

We can extend the general principles of electrophilic addition to acid catalyzed hydration In the first step of the mechanism shown m Figure 6 9 proton transfer to 2 methylpropene forms tert butyl cation This is followed m step 2 by reaction of the car bocation with a molecule of water acting as a nucleophile The aUcyloxomum ion formed m this step is simply the conjugate acid of tert butyl alcohol Deprotonation of the alkyl oxonium ion m step 3 yields the alcohol and regenerates the acid catalyst... [Pg.247]

Nobel-laureate Richard Feynman once said that the principles of physics do not preclude the possibility of maneuvering things atom by atom (260). Recent developments in the fields of physics, chemistry, and biology (briefly described in the previous sections) bear those words out. The invention and development of scanning probe microscopy has enabled the isolation and manipulation of individual atoms and molecules. Research in protein and nucleic acid stmcture have given rise to powerful tools in the estabUshment of rational synthetic protocols for the production of new medicinal dmgs, sensing elements, catalysts, and electronic materials. [Pg.211]

Phosphoric acid [7664-38-2] and its derivatives are effective catalysts for this reaction (60). Reverse alcoholysis and acidolysis can, in principle, also be used to produce polyamides, and the conversion of esters to polyamides through their reaction within diamines, reverse alcoholysis, has been demonstrated (61). In the case of reverse acidolysis, the acid by-product is usually less volatile than the diamine starting material. Thus, this route to the formation of polyamide is not likely to yield a high molecular weight polymer. [Pg.225]

Manufacture. PVBs are manufactured by a variety of two-stage heterogeneous processes. In one of these an alcohol solution of poly(vinyl acetate) and an acid catalyst are heated to 60—80°C with strong agitation. As the poly(vinyl alcohol) forms, it precipitates from solution (77). Ethyl acetate, the principle by-product, is stripped off and sold. The precipitated poly(vinyl alcohol) is washed to remove by-products and excess acid. The poly(vinyl alcohol) is then suspended in a mixture of ethyl alcohol, butyraldehyde, and mineral acid at temperatures above 70°C. As the reaction approaches completion the reactants go into solution. When the reaction is complete, the catalyst is neutralized and the PVB is precipitated from solution with water, washed, centrifuged, and dried. Resin from this process has very low residual vinyl acetate and very low levels of gel from intermolecular acetalization. [Pg.452]

These pioneers understood the interplay between chemical equiUbrium and reaction kinetics indeed, Haber s research, motivated by the development of a commercial process, helped to spur the development of the principles of physical chemistry that account for the effects of temperature and pressure on chemical equiUbrium and kinetics. The ammonia synthesis reaction is strongly equiUbrium limited. The equiUbrium conversion to ammonia is favored by high pressure and low temperature. Haber therefore recognized that the key to a successful process for making ammonia from hydrogen and nitrogen was a catalyst with a high activity to allow operation at low temperatures where the equiUbrium is relatively favorable. [Pg.161]

A thorough list of references is given in J. T. Richardson, Principles of Catalyst Development, Plenum Press, New York, 1989. [Pg.185]

Much progress has been made ia understanding how to create and use catalysts, but the design and preparation of practical catalysts stUl rehes on a substantial amount of art that is, the appHcation of known facts and iatuition to trial and error methods. General principles are described ia a number of texts (18—21). Very few completely new catalyst systems have been designed from first principles or completely theoretical considerations. New catalysts are much more likely to be discovered as a result of an adventitious observation than designed by iatent. [Pg.195]

In principle, the catalytic converter is a fixed-bed reactor operating at 500—620°C to which is fed 200—3500 Hters per minute of auto engine exhaust containing relatively low concentrations of hydrocarbons, carbon monoxide, and nitrogen oxides that must be reduced significantly. Because the auto emission catalyst must operate in an environment with profound diffusion or mass-transfer limitations (51), it is apparent that only a small fraction of the catalyst s surface area can be used and that a system with the highest possible surface area is required. [Pg.198]

The use of a fluidized-bed reactor is possible only when the reactants are essentiaUy in the gaseous phase. Eluidized-beds are not suitable for middle distiUate synthesis, where a heavy wax is formed. Eor gasoline synthesis processes like the MobU MTG process and the Synthol process, such reactors are especiaUy suitable when frequent or continuous regeneration of the catalyst is required. Slurry reactors and ebuUiating-bed reactors comprising a three-phase system with very fine catalyst are, in principle, suitable for middle distiUate and wax synthesis, but have not been appHed on a commercial scale. [Pg.277]

R. A. Sheldon and J. K. Kochi, Metal-Cataly d Oxidations of Organic Compounds, Academic Press, Inc., New York, 1981. Mechanistic principles and synthetic methodology for homogeneous and heterogeneous metal-containing oxidation catalysts, many of which are coordination compounds, are discussed. [Pg.174]


See other pages where Catalyst principle is mentioned: [Pg.3619]    [Pg.1298]    [Pg.1299]    [Pg.2445]    [Pg.3618]    [Pg.695]    [Pg.3619]    [Pg.1298]    [Pg.1299]    [Pg.2445]    [Pg.3618]    [Pg.695]    [Pg.41]    [Pg.41]    [Pg.396]    [Pg.729]    [Pg.2696]    [Pg.2777]    [Pg.140]    [Pg.219]    [Pg.341]    [Pg.504]    [Pg.560]    [Pg.561]    [Pg.328]    [Pg.170]    [Pg.176]    [Pg.296]    [Pg.392]    [Pg.248]    [Pg.480]    [Pg.160]    [Pg.183]    [Pg.193]    [Pg.196]    [Pg.205]    [Pg.277]    [Pg.7]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Catalyst Principles and Mechanism

Catalyst layer principles

General principles concerning hydrogenation catalysts

Metal complex catalysts basic principles

Nickel catalysts basic principles

Nickel catalysts principles

Principles of catalyst design

Titanium catalysts asymmetric principles

Transition metal catalysts basic principles

© 2024 chempedia.info