Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst preparation precursor

A MgO-supported W—Pt catalyst has been prepared from IWsPttCOIotNCPh) (i -C5H5)2l (Fig. 70), reduced under a Hs stream at 400 C, and characterized by IR, EXAFS, TEM and chemisorption of Hs, CO, and O2. Activity in toluene hydrogenation at 1 atm and 60 C was more than an order of magnitude less for the bimetallic cluster-derived catalyst, than for a catalyst prepared from the two monometallic precursors. [Pg.113]

Both PtRu/MgO catalysts prepared from cluster precursor and organometallic mixture were active for ethylene hydrogenation. The apparent activation energy of the former catalyst obtained from the Arrhenius plot during -40 to -25°C was 5.2 kcal/mol and that of the latter catalyst obtained during -50 to -30°C was 6.0 kcal/mol. The catalytic activity in terms of turn over frequency (TOP) was calculated on the assumption that all metal particles were accessible for reactant gas. Lower TOP of catalyst prepared from cluster A at -40°C, 57.3 x lO" s" was observed probably due to Pt-Ru contribution compared to that prepared from acac precursors. [Pg.212]

Transmission infrared spectroscopy is very popular for studying the adsorption of gases on supported catalysts and for studying the decomposition of infrared active catalyst precursors during catalyst preparation. Infrared spectroscopy is an in situ technique that is applicable in transmission or diffuse reflection mode on real catalysts. [Pg.158]

Copper ore containing a deposit of aurlchalclte was obtained from Wards Natural Science Establishment. The mineral aurlchalclte crystallites were gently scraped from the ore and rinsed In ethanol prior to use. The synthetic precursor was prepared by copreclpltatlon from a mixture of IM Cu and IM Zn nitrate solutions, such that a Cu/Zn mole ratio of 30/70 was prepared, by dropwlse addition of IM Na2C03 at 90 C until the pH Increased from approximately 3 to 7. Calcination and reduction of the mineral were performed as In standard catalyst preparation procedures, which have been described In detail earlier (jL). ... [Pg.352]

The aurlchalclte mineral was calcined In air at 350°C for 4 hours according to the standard catalyst preparation procedure used earlier for the precipitated precursor (1 ). XRD showed that aurlchalclte and... [Pg.352]

In summary, large (>lpm) single crystal platelets of aurichalcite produced highly dispersed Cu and ZnO particles with dimensions on the order of 5 nm, as a result of standard catalyst preparation procedures used in the treatment of the precipitate precursors. The overall platelet dimensions were maintained throughout the preparation treatments, but the platelets became porous and polycrystalline to accommodate the changing chemical structure and density of the Cu and Zn components. The morphology of ZnO and Cu in the reduced catalysts appear to be completely determined by the crystallography of aurichalcite. [Pg.360]

Dubau L, Coutanceau C, Gamier E, Leger JM, Lamy C. 2003a. Electrooxidation of methanol at platinum-mthenium catalysts prepared from colloidal precursors Atomic composition and temperature effects. J Appl Electrochem 33 419-429. [Pg.369]

Gomez-Sainero et al. (11) reported X-ray photoelectron spectroscopy results on their Pd/C catalysts prepared by an incipient wetness method. XPS showed that Pd° (metallic) and Pdn+ (electron-deficient) species are present on the catalyst surface and the properties depend on the reduction temperature and nature of the palladium precursor. With this understanding of the dual sites nature of Pd, it is believed that organic species S and A are chemisorbed on to Pdn+ (SI) and H2 is chemisorbed dissociatively on to Pd°(S2) in a noncompetitive manner. In the catalytic cycle, quasi-equilibrium ( ) was assumed for adsorption of reactants, SM and hydrogen in liquid phase and the product A (12). Applying Horiuti s concept of rate determining step (13,14), the surface reaction between the adsorbed SM on site SI and adsorbed hydrogen on S2 is the key step in the rate equation. [Pg.505]

The reduction of the catalyst precursor with sodium formate resulted in a lower Pd dispersion than the catalyst prepared by hydrogen reduction, the particle size is much larger in the former catalyst. The mesoporous carbon supported Pd catalysts are near to those of Pd on titania with respect to their enantiodifferentiating ability. Besides the metal dispersion, the availability of the Pd surface in the pores for the large modifier molecules seems to be the determining factor of the enantioselectivity. [Pg.533]

Cr-ZSM-5 catalysts prepared by solid-state reaction from different chromium precursors (acetate, chloride, nitrate, sulphate and ammonium dichromate) were studied in the selective ammoxidation of ethylene to acetonitrile. Cr-ZSM-5 catalysts were characterized by chemical analysis, X-ray powder diffraction, FTIR (1500-400 cm 1), N2 physisorption (BET), 27A1 MAS NMR, UV-Visible spectroscopy, NH3-TPD and H2-TPR. For all samples, UV-Visible spectroscopy and H2-TPR results confirmed that both Cr(VI) ions and Cr(III) oxide coexist. TPD of ammonia showed that from the chromium incorporation, it results strong Lewis acid sites formation at the detriment of the initial Bronsted acid sites. The catalyst issued from chromium chloride showed higher activity and selectivity toward acetonitrile. This activity can be assigned to the nature of chromium species formed using this precursor. In general, C r6+ species seem to play a key role in the ammoxidation reaction but Cr203 oxide enhances the deep oxidation. [Pg.345]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

Outside of catalyst preparation, reaction of sucrose with metal nitrates has been used to prepare nanocomposite mixed oxide materials. Wu et al. [46] reported the synthesis of Mg0-Al203 and Y203-Zr02 mixed oxides by reaction of nitrate precursors with sucrose. The resulting powders had smaller particles than those prepared without sucrose. Das [47] used a similar method in the presence of poly vinylalcohol to produce nanocrystalline lead zirconium titanate and metal ferrierites (MFe204, M = Co, Ni, or Zn). The materials prepared using sucrose had smaller crystallites than those made without. Both authors observed an exothermic decomposition of the precursors during calcination. [Pg.6]

Trujillano R., Villain R, Louis C., and Lambert J.-R 2007. Chemistry of silica-sup-ported cobalt catalysts prepared by cation adsorption. 1. Initial localised adsorption of cobalt precursors. J. Phys. Chem. C 111 7152-64. [Pg.16]

Transmission infrared spectroscopy is an important tool in catalyst preparation to study the decomposition of infrared-active catalyst precursors as a result of drying, calcination or reduction procedures. In particular, if catalysts are prepared from organometallic precursors, infrared spectroscopy is the indicated technique for investigation [26]. [Pg.230]

TOF-SIMS images (Figs. 13.5 and 13.6) illustrate the ability to detect changes in the dispersion (uniform or presence of metal clusters) of the active phase in supported-oxide catalysts. Figure 13.5 shows nearly uniform distribution of molybdenum. The surface contamination with NH4+ ions coming from a precursor, which were not removed during the catalyst preparation process, is also observed. Cobalt clusters in the range of several micrometers are clearly visible in Fig. 13.6. [Pg.281]

Some of the above-mentioned catalysts or precursors are commercially available, such as the Corey catalyst (,S) - 3,3 - d i p h e n yI -1 - met h y 1 tctralr yd ro- 3 H - py r-rolo[l,2-c] [l,3,2]oxazaborole (Me-CBS). The amino alcohol (5)-(—)-2-amino-3-methyl-l,l -diphenylmethan-l-ol, used as the ligand in the Itsuno catalyst is also readily available. The ligand used to prepare the oxazaphospholidine or oxazaphosphinamide complex (from Wills) can be synthesized easily from commeri-cally available material. The preparation of the Bolm (3-hydroxysulfoximine catalyst will be described in this chapter (Figure 11.2). [Pg.144]

The most active Pd based catalysts in the table have been reported by Shishido et al.51 who have employed hydrotalcite precursors, using a solid phase crystallisation (SPC) method. Comparisons made with catalysts prepared via impregnation showed SPC to afford higher activity catalysts, which was ascribed to better dispersion and also easy desorption of CO. The inclusion of a Cr component in these types of catalyst has also been reported to be beneficial.52 In terms of the desorption of CO, isotopic studies performed by McKee53 over ruthenium and platinum catalysts have indicated that the rate determining step of methanol decomposition is the fission of a... [Pg.114]


See other pages where Catalyst preparation precursor is mentioned: [Pg.262]    [Pg.116]    [Pg.209]    [Pg.212]    [Pg.357]    [Pg.196]    [Pg.351]    [Pg.52]    [Pg.154]    [Pg.699]    [Pg.175]    [Pg.212]    [Pg.630]    [Pg.154]    [Pg.165]    [Pg.169]    [Pg.214]    [Pg.214]    [Pg.414]    [Pg.207]    [Pg.182]    [Pg.317]    [Pg.4]    [Pg.16]    [Pg.97]    [Pg.97]    [Pg.247]    [Pg.24]    [Pg.1486]    [Pg.231]    [Pg.80]    [Pg.109]    [Pg.113]    [Pg.228]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Catalyst precursor

Catalyst preparation precursor formation

Catalysts preparation

Preparation precursors

© 2024 chempedia.info