Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metalloporphyrin catalysts

Owing to their extensive use as oxidation catalysts, metalloporphyrins will be discussed in a separate section. [Pg.90]

Metalloporphyrins as catalysts of chain transfer in radical polymerisation and stereoselective oxidation. L. Karmilova, G. V. Ponomarev, B. R. Smirnov and I. M. Bel yovskii, Russ. Chem. Rev. (Engl. Transl), 1984, 53,132 (44). [Pg.69]

It was shown that dibenzothiophene oxide 17 is inert to 1-benzyl-l,4-dihydro nicotinamide (BNAH) but that, in the presence of catalytic amounts of metalloporphyrin, 17 is reduced quantitatively by BNAH. From experimental results with different catalysts [meso-tetraphenylporphinato iron(III) chloride (TPPFeCl) being the best] and a series of substituted sulfoxides, Oae and coworkers80 suggest an initial SET from BNAH to Fe1 followed by a second SET from the catalyst to the sulfoxide. The results are also consistent with an initial coordination of the substrate to Fem, thus weakening the sulfur-oxygen bond in a way reminiscent of the reduction of sulfoxides with sodium borohydride in the presence of catalytic amounts of cobalt chloride81. [Pg.1063]

The above-described structures are the main representatives of the family of nitrogen ligands, which cover a wide spectrum of activity and efficiency for catalytic C - C bond formations. To a lesser extent, amines or imines, associated with copper salts, and metalloporphyrins led to good catalysts for cyclo-propanation. Interestingly, sulfinylimine ligands, with the chirality provided solely by the sulfoxide moieties, have been also used as copper-chelates for the asymmetric Diels-Alder reaction. Amide derivatives (or pyridylamides) also proved their efficiency for the Tsuji-Trost reaction. [Pg.144]

Of considerable interest was the demonstration that metalloporphyrins and the like can be used as nonmetallic catalysts in electrochemical reactions, nourishing hopes that in the future, expensive platinum catalysts could be replaced. Starting in 1968, dimensionally stable electrodes with a catalyst prepared from the mixed oxides of titanium and ruthenium found widespread use in the chlorine industry. [Pg.552]

In addition to their proven capacity to catalyze a highly efficient and rapid reduction of O2 under ambient conditions (e.g., cytochrome c oxidase, the enzyme that catalyzes the reduction of >90% of O2 consumed by a mammal, captures >80% of the free energy of ORR at a turnover frequency of >50 O2 molecules per second per site), metalloporphyrins are attractive candidates for Pt-free cathodes. Probably the major impetus for a search for Pt-free cathodic catalysts for low temperature fuel cells is... [Pg.637]

METALLOPORPHYRIN CATALYSTS OF OXYGEN REDUCTION COoH COgH... [Pg.638]

Most studies of ORR catalysis by metalloporphyrins have been carried out using water-insoluble catalysts absorbed on a graphite electrode in contact with aqueous solution. In a limited number of cases, four other approaches have been used catalysts imbedded in an inert film (i.e., Nafion or lipid) on the electrode surface self-assembled monolayers of catalysts catalysts in aqueous or mixed organic/aqueous solutions in contact with an electrode and catalysis in mixed aqueous/organic medium using... [Pg.647]

ORR catalysis by Fe or Co porphyrins in Nation [Shi and Anson, 1990 Anson et al., 1985 Buttry and Anson, 1984], polyp5rrolidone [Wan et al., 1984], a surfactant [Shi et al., 1995] or lipid films [CoUman and Boulatov, 2002] on electrode surfaces has been studied. The major advantages of diluting a metalloporphyrin in an inert film include the abUity to study the catalytic properties of isolated molecules and the potentially higher surface loading of the catalyst without mass transport Umit-ations. StabUity of catalysts may also improve upon incorporating them into a polymer. However, this setup requires that the catalyst have a reasonable mobUity in the matrix, and/or that a mobile electron carrier be incorporated in the film [Andrieux and Saveant, 1992]. The latter limits the accessible electrochemical potentials to that of the electron carrier. [Pg.652]

Relatively little work has been done on ORR catalysis by self-assembled mono-layers (SAMs) of metalloporphyrins. The advantages of this approach include a much better defined morphology, structure, and composition of the catalytic film, and the surface coverage, and the capacity to control the rate at which the electrons ate transferred from the electrode to the catalysts [CoUman et al., 2007b Hutchison et al., 1993]. These attributes are important for deriving the catal5d ic mechatfism. The use of optically transparent electrodes aUows characterization of the chemical... [Pg.652]

The simple porphyrin category includes macrocycles that are accessible synthetically in one or few steps and are often available commercially. In such metallopor-phyrins, one or both axial coordinahon sites of the metal are occupied by ligands whose identity is often unknown and cannot be controlled, which complicates mechanistic interpretation of the electrocatalytic results. Metal complexes of simple porphyrins and porphyrinoids (phthalocyanines, corroles, etc.) have been studied extensively as electrocatalysts for the ORR since the inihal report by Jasinsky on catalysis of O2 reduction in 25% KOH by Co phthalocyanine [Jasinsky, 1964]. Complexes of all hrst-row transition metals and many from the second and third rows have been examined for ORR catalysis. Of aU simple metalloporphyrins, Ir(OEP) (OEP = octaethylporphyrin Fig. 18.9) appears to be the best catalyst, but it has been little studied and its catalytic behavior appears to be quite distinct from that other metaUoporphyrins [CoUman et al., 1994]. Among the first-row transition metals, Fe and Co porphyrins appear to be most active, followed by Mn [Deronzier and Moutet, 2003] and Cr. Because of the importance of hemes in aerobic metabolism, the mechanism of ORR catalysis by Fe porphyrins is probably understood best among all metalloporphyrin catalysts. [Pg.655]

Litde is known about the stability of these porphyrins in O2 reduction, how this peripheral substitution affects O2 affinity of the metalloporphyrin, how the peripheral metal complexes perturb the energetics of various intermediates, and/or the kinetics of various steps or the mechanisms of O2 reduction by these porphyrins. At present, it remains to be seen if the strategy of coordinating metal complexes on the periphery of a metalloporphyrin can be exploited in the rational design of new ORR catalysts. [Pg.663]

Although impressive progress has been made in unraveling the mechanism of ORR catalysis by cofacial porphyrins, much remains to be learned before we can understand how this mechanism relates to those in heme enzymes and simple metalloporphyrins and use our mechanistic knowledge to rationally design improved metalloporphyrin catalysts for the ORR. [Pg.675]


See other pages where Metalloporphyrin catalysts is mentioned: [Pg.58]    [Pg.58]    [Pg.352]    [Pg.140]    [Pg.915]    [Pg.637]    [Pg.637]    [Pg.638]    [Pg.640]    [Pg.642]    [Pg.644]    [Pg.646]    [Pg.647]    [Pg.648]    [Pg.648]    [Pg.650]    [Pg.651]    [Pg.652]    [Pg.652]    [Pg.653]    [Pg.653]    [Pg.653]    [Pg.654]    [Pg.654]    [Pg.655]    [Pg.656]    [Pg.658]    [Pg.660]    [Pg.661]    [Pg.662]    [Pg.662]    [Pg.664]    [Pg.666]    [Pg.666]    [Pg.668]    [Pg.670]    [Pg.672]    [Pg.674]   
See also in sourсe #XX -- [ Pg.240 , Pg.244 , Pg.251 , Pg.267 ]




SEARCH



Catalysts metalloporphyrins

Catalysts metalloporphyrins

Metalloporphyrin

Metalloporphyrin metalloporphyrins

Metalloporphyrins as Catalysts for Precision Macromolecular Synthesis

Metalloporphyrins as catalysts

Metalloporphyrins, catalysts for

Transition metal metalloporphyrin catalysts

© 2024 chempedia.info