Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst, general porosity

Porosity and Pore Size. The same methods used to determine the porosity and pore si2e distribution of the support generally can be used for the catalyst. However, the values found for the catalyst usually ate different from those of the bare support. Porosity could be increased if a part of the support is leached away during preparation of the catalyst, or, more likely, porosity will be decreased because catalytic materials deposited on the support win occupy a part of the support s pore volume. [Pg.196]

The term porosity refers to the fraction of the medium that contains the voids. When a fluid is passed over the medium, the fraction of the medium (i.e., the pores) that contributes to the flow is referred to as the effective porosity of the media. In a general sense, porous media are classified as either unconsolidated and consolidated and/or as ordered and random. Examples of unconsolidated media are sand, glass beads, catalyst pellets, column packing materials, soil, gravel and packing such as charcoal. [Pg.63]

The catalyst strength is generally improved at low porosity but this usually causes an adverse effect on the activity. Due to the low operating temperature and low S02 concentration, the conditions for the new catalyst in a 4th bed are... [Pg.321]

Catalyst particles generally consist of a metal deposited onto the surface of a support and are denoted by metal/support, e.g. Pd/C indicates palladium metal on a carbon support. Among the metals used for catalysis, Pd is often found to be the most active metal. (Augustine 1965) For example, in the aqueous hydrodechlorination of 1,1,2-trichloroethane, Pd catalysts achieved significantly more conversion than Pt or Rh catalysts. (Kovenklioglu et al. 1992) Catalyst supports can vary in shape, size, porosity and surface area typical materials include carbon, alumina, silica and zeolites. [Pg.46]

The zeolite is at the core of the catalyst, but the role of the matrix is also crucial and parameters such as its surface area, porosity, composition and acidity need to be controlled very precisely (4). A general scheme for preparation of FCC catalysts is depicted in Figure 3.4. [Pg.63]

As it is generally the case with bifunctional catalysis processes, the balance between hydrogenating and acid functions determines for a large part the catalyst activity. This was quantitatively shown for series of bifunctional catalysts constituted by mechanical mixtures of a well dispersed Pt/Alumina catalyst and of mordenite samples differing by their acidity and their porosity (25). The balance between hydrogenating and acid functions was taken as nPt/nH+ the ratio between the number of accessible platinum atoms and the number of protonic sites determined by pyridine adsorption. [Pg.197]

The general approach for modelling catalyst deactivation is schematically organised in Figure 2. The central part are the mass balances of reactants, intermediates, and metal deposits. In these mass balances, coefficients are present to describe reaction kinetics (reaction rate constant), mass transfer (diffusion coefficient), and catalyst porous texture (accessible porosity and effective transport properties). The mass balances together with the initial and boundary conditions define the catalyst deactivation model. The boundary conditions are determined by the axial position in the reactor. Simulations result in metal deposition profiles in catalyst pellets and catalyst life-time predictions. [Pg.240]

The benefits of nonuniform activity distributions (site density) or diffusive properties (porosity, tortuosity) within pellets on the rate of catalytic reactions were first suggested theoretically by Kasaoka and Sakata (Ml). This proposal followed the pioneering experimental work of Maatman and Prater (142). Models of nonuniform catalyst pellets were later extended to more general pellet geometries and activity profiles (143), and applied to specific catalytic reactions, such as SO2 and naphthalene oxidation (144-146). Previous experimental and theoretical studies were recently discussed in an excellent review by Lee and Aris (147). Proposed applications in Fischer-Tropsch synthesis catalysis have also been recently reported (50-55,148), but the general concepts have been widely discussed and broadly applied in automotive exhaust and selective hydrogenation catalysis (142,147,149). [Pg.288]

Activated carbons are produced with a wide range of properties and physical forms, which leads to their use in numerous applications (Table 1). For example, their high internal surface area and pore volume are pertinent to their being employed as adsorbents, catalysts, or catalyst supports in gas and liquid phase processes for purification and chemical recovery. General information on the manufacture, properties, and applications of conventional activated carbons can be found in Porosity in Carbons, edited by John Patrick [I],... [Pg.3]


See other pages where Catalyst, general porosity is mentioned: [Pg.312]    [Pg.294]    [Pg.1489]    [Pg.375]    [Pg.51]    [Pg.756]    [Pg.511]    [Pg.458]    [Pg.1059]    [Pg.14]    [Pg.222]    [Pg.229]    [Pg.43]    [Pg.265]    [Pg.136]    [Pg.127]    [Pg.146]    [Pg.72]    [Pg.254]    [Pg.255]    [Pg.130]    [Pg.511]    [Pg.338]    [Pg.124]    [Pg.458]    [Pg.585]    [Pg.50]    [Pg.370]    [Pg.534]    [Pg.550]    [Pg.281]    [Pg.277]    [Pg.882]    [Pg.243]    [Pg.390]    [Pg.68]    [Pg.39]    [Pg.457]    [Pg.16]    [Pg.73]    [Pg.20]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Catalysts porosity

Catalysts, general

© 2024 chempedia.info