Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis transport effects

It must be emphasized that the above considerations were made in the absence of reaction. Interfacial mass transfer followed by reaction requires further consideration. The Hatta regimes classify transfer-reaction situations into infinitely slow transport compared to reaction (Hatta category A) to infinitely fast transport compared to reaction (Hatta category H) [42]. In the first case all reaction occurs at the interface and in the second all reaction occurs in the bulk fluid. Homogenous catalytic hydrogenations, carbonylations etc. require consideration of this issue. An extreme example of the severity of mass transport effects on reactivity and selectivity in hydroformylation has been provided by Chaudari [43]. Further general discussions for homogeneous catalysis can be found elsewhere [39[. [Pg.160]

The starting point of a number of theoretical studies of packed catalytic reactors, where an exothermic reaction is carried out, is an analysis of heat and mass transfer in a single porous catalyst since such system is obviously more conductive to reasonable, analytical or numerical treatment. As can be expected the mutual interaction of transport effects and chemical kinetics may give rise to multiple steady states and oscillatory behavior as well. Research on multiplicity in catalysis has been strongly influenced by the classic paper by Weisz and Hicks (5) predicting occurrence of multiple steady states caused by intrapellet heat and mass intrusions alone. The literature abounds with theoretical analysis of various aspects of this phenomenon however, there is a dearth of reported experiments in this area. Later the possiblity of oscillatory activity has been reported (6). [Pg.60]

Horn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Dalle Nogare, D., Tupy, S.A., and Schmidt, L.D. Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium. Journal of Catalysis, 2007, 249 (2), 380. [Pg.154]

The catalytic behavior of enzymes in immobilized form may dramatically differ from that of soluble homogeneous enzymes. In particular, mass transport effects (the transport of a substrate to the catalyst and diffusion of reaction products away from the catalyst matrix) may result in the reduction of the overall activity. Mass transport effects are usually divided into two categories - external and internal. External effects stem from the fact that substrates must be transported from the bulk solution to the surface of an immobilized enzyme. Internal diffusional limitations occur when a substrate penetrates inside the immobilized enzyme particle, such as porous carriers, polymeric microspheres, membranes, etc. The classical treatment of mass transfer in heterogeneous catalysis has been successfully applied to immobilized enzymes I27l There are several simple experimental criteria or tests that allow one to determine whether a reaction is limited by external diffusion. For example, if a reaction is completely limited by external diffusion, the rate of the process should not depend on pH or enzyme concentration. At the same time the rate of reaction will depend on the stirring in the batch reactor or on the flow rate of a substrate in the column reactor. [Pg.176]

Garland M (2002) Transport effects in homogeneous catalysis. In Horvath IT (ed) Encyclopedia of catalysis. Wiley, New York... [Pg.228]

The subject of transport effects in heterogeneous catalysis is treated in significantly greater depth. [Pg.469]

The topic of transport effects in catalysis is revisited in Chapter 9. The structure of porous catalysts is discussed, and the internal and external resistances to heat and mass transfer are quantified. Special attention is devoted to helping the student understand the influence of transport effects on overall reaction behavior, including reaction selectivity. Experimental and computational methods for predicting the presence or absence of transport effects are discussed in some detail. The chapter contains examples of reactor sizing and analysis in the presence of transport effects. [Pg.471]

In sodium chloride solutions the ion transport number for Na+ is about 0.4 compared to about 0.6 for CU. Thus a CX membrane would be expected to polarize at lower current densities than an AX membrane. Careful measurements show that CX membranes do polarize at lower current densities however, the effects on pH are not as significant as those found when AX membranes polarize. Such differences ia behavior have beea satisfactorily explaiaed as resultiag from catalysis of water dissociatioa by weaMy basic groups ia the AX membrane surfaces and/or by weaMy acidic organic compounds absorbed on such surfaces (5). [Pg.174]

Effects of transport processes cannot be ignored in investigations aimed at more fundamental aspects of kinetics and catalysis. The interaction of chemical and physical processes was noticed a long time ago. M. V. Lomonosov mentioned in 1745 ... [Pg.277]

Inspection of Fig. 15.3 reveals that while for jo 0.1 nAcm , the effectiveness factor is expected to be close to 1, for a faster reaction with Jo 1 p,A cm , it will drop to about 0.2. This is the case of internal diffusion limitation, well known in heterogeneous catalysis, when the reagent concentration at the outer surface of the catalyst grains is equal to its volume concentration, but drops sharply inside the pores of the catalyst. In this context, it should be pointed out that when the pore size is decreased below about 50 nm, the predominant mechanism of mass transport is Knudsen diffusion [Malek and Coppens, 2003], with the diffusion coefficient being less than the Pick diffusion coefficient and dependent on the porosity and pore stmcture. Moreover, the discrete distribution of the catalytic particles in the CL may also affect the measured current owing to overlap of diffusion zones around closely positioned particles [Antoine et ah, 1998]. [Pg.523]

Catalysis, as soon as it was born, dealt with dimensions in the range of nanometers. However, only from the 1970s did the systematic study of properties in the nanometer regime stimulate tremendous enhancements in the preparation of new and improved materials. The manipulation of materials down to the molecular level allowed novel and unexpected properties to be revealed. This resulted in the cheap production of transportation fuels, novel polymers and plastics, more effective drugs, and many thousands of other products which are now present in our everyday life. [Pg.89]

However, ultrasonic rate enhancements of heterogeneous catalysis have usually been relatively modest (less than tenfold). The effect of irradiating operating catalysts is often simply due to improved mass transport (58). In addition, increased dispersion during the formation of catalysts under ultrasound (59) will enhance reactivity, as will the fracture of friable solids (e.g., noble metals on C or silica (60),(62),(62) or malleable metals (63)). [Pg.208]

Because the reaction in a CL requires three-phase boundaries (or interfaces) among Nafion (for proton transfer), platinum (for catalysis), and carbon (for electron transfer), as well as reacfanf, an optimized CL structure should balance electrochemical activity, gas transport capability, and effective wafer management. These goals are achieved through modeling simulations and experimental investigations, as well as the interplay between modeling and experimental validation. [Pg.92]


See other pages where Catalysis transport effects is mentioned: [Pg.159]    [Pg.14]    [Pg.303]    [Pg.61]    [Pg.216]    [Pg.918]    [Pg.20]    [Pg.470]    [Pg.111]    [Pg.180]    [Pg.539]    [Pg.207]    [Pg.219]    [Pg.4]    [Pg.250]    [Pg.111]    [Pg.531]    [Pg.86]    [Pg.49]    [Pg.51]    [Pg.178]    [Pg.209]    [Pg.332]    [Pg.166]    [Pg.346]    [Pg.92]    [Pg.181]    [Pg.487]    [Pg.140]    [Pg.101]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Effect of Transport Phenomena on Heterogeneous Catalysis

Effective transport

Transport effects

© 2024 chempedia.info