Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis experimental

Magureanu, M. (2012) VOC removal from air by plasma-assisted catalysis-experimental work, in Plasma Chemistry and Catalysis in Gases and Liquids (eds V.I. Parvulescu, M. Magiu-eanu, and P. Lukes), Wiley-VCH Verlag GmbFl, Weinheim, pp. 131-170. [Pg.411]

In a classic paper in the field of Ziegler catalysis, experimental evidence into the insertion of an rmsaturated monomer into a titanium-methyl bond associated with a titanium cation was first reported by Eisch et al. [33]. [Pg.184]

As an example, experimental kinetic data on the hydrolysis of amides under basic conditions as well as under acid catalysis were correlated with quantitative data on charge distribution and the resonance effect [13]. Thus, the values on the free energy of activation, AG , for the acid catalyzed hydrolysis of amides could be modeled quite well by Eq. (5)... [Pg.183]

This chapter introduces the experimental work described in the following chapters. Some mechanistic aspects of the Diels-Alder reaction and Lewis-acid catalysis thereof are discussed. This chapter presents a critical survey of the literature on solvent ejfects on Diels-Alder reactions, with particular emphasis on the intriguing properties of water in connection with their effect on rate and selectivity. Similarly, the ejfects of water on Lewis acid - Lewis base interactions are discussed. Finally the aims of this thesis are outlined. [Pg.1]

Enzymatic Catalysis. Enzymes are biological catalysts. They increase the rate of a chemical reaction without undergoing permanent change and without affecting the reaction equiUbrium. The thermodynamic approach to the study of a chemical reaction calculates the equiUbrium concentrations using the thermodynamic properties of the substrates and products. This approach gives no information about the rate at which the equiUbrium is reached. The kinetic approach is concerned with the reaction rates and the factors that determine these, eg, pH, temperature, and presence of a catalyst. Therefore, the kinetic approach is essentially an experimental investigation. [Pg.286]

This type of ring interconversion is represented by the general expression shown in Scheme 15. Analogous rearrangements occur in benzo-fused systems. The known conversions are limited to D = O in the azole system, i.e. cleavage of the weak N—O bond occurs readily. Under the reaction conditions, Z needs to be a good nucleophile in its own right or by experimental enhancement (base catalysis, solvent, etc.) and Z is usually O, S, N or C. [Pg.158]

Phase transfer catalysis has been used with success to prepare N- substituted pyrazoles (78MI40403, 79MI40408, 70JHC1237, 80JOC3172) and this procedure can be considered the simplest and most efficient way to obtain these compounds. Experimental design methodology has been used to study the influence of the factors on the reaction between pyrazole and -butyl bromide under phase transfer conditions (79MI40408). [Pg.230]

A kinetic method for the determination of 2,4-dinitrophenol is proposed. The method is based on the inhibiting effect of 2,4-dinib ophenol on the Mn(II) catalysis of the oxidation of malachite green with potassium periodate. The reaction was followed spectrophotometrically at 615 nm. The optimal experimental conditions for the determination of 2,4-dinitrophenol were established under the optimal reaction conditions ... [Pg.136]

The chemical reaction catalyzed by triosephosphate isomerase (TIM) was the first application of the QM-MM method in CHARMM to the smdy of enzyme catalysis [26]. The study calculated an energy pathway for the reaction in the enzyme and decomposed the energetics into specific contributions from each of the residues of the enzyme. TIM catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) as part of the glycolytic pathway. Extensive experimental studies have been performed on TIM, and it has been proposed that Glu-165 acts as a base for deprotonation of DHAP and that His-95 acts as an acid to protonate the carbonyl oxygen of DHAP, forming an enediolate (see Fig. 3) [58]. [Pg.228]

With correct experimental procedure TDS is straightforward to use and has been applied extensively in basic experiments concerned with the nature of reactions between pure gases and clean solid surfaces. Most of these applications have been catalysis-related (i. e. performed on surfaces acting as models for catalysts) and TDS has always been used with other techniques, e.g. UPS, ELS, AES, and LEED. To a certain extent it is quantifiable, in that the area under a desorption peak is proportional to the number of ions of that species desorbed in that temperature range, but measurement of the area is not always easy if several processes overlap. [Pg.178]

The experimental detection of general acid catafysis is done by rate measurements at constant pH but differing buffer concentration. Because under these circumstances [H+] is constant but the weak acid component(s) of the buffer (HA, HA, etc.) changes, the observation of a change in rate is evidence of general acid catalysis. If the rate remains constant, the reaction exhibits specific acid catalysis. Similarly, general base-catalyzed reactions show a dependence of the rate on the concentration and identity of the basic constituents of the buffer system. [Pg.229]

Derive the general expression for the observed rate constant for hydrolysis of A as a function of pH. Assume, as is the case experimentally, that intramolecular general acid catalysis completely outweighs intermolecular catalysis by hydronium ion in the pH range of interest. Does the form of your expression agree with the pH rate profile given for this reaction in Fig. 8.6 (p. 489) ... [Pg.498]

This property of quaternary fflnmonium salts is used to advantage in an experimental technique known as phase-transfer catalysis. Imagine that you wish to cany out the reaction... [Pg.923]

The rate constant /ct, determined by means of Eq. (6-47) or (6-48), may describe either general base or nucleophilic catalysis. To distinguish between these possibilities requires additional information. For example, in Section 3.3, we described a kinetic model for the N-methylimidazole-catalyzed acetylation of alcohols and experimental designs for the measurement of catalytic rate constants. These are summarized in Scheme XVIIl of Section 3.3, which we present here in slightly different form. [Pg.271]

The existence of Br nsted relationships affects the experimental problem of detecting general acid or base catalysis. This is clearly shown by an example given by Bell. Consider the reaction under study as carried out in an aqueous solution containing 0.10 M acetic acid and 0.10 M sodium acetate, and suppose that the Br nsted equation applies. Three catalytic species are present these are HjO, with = - 1.74 H2O, pKa 15.74 and HOAc, pTiT 4.76. -pp i7i-3 93.pp.9i-5 9s concentrations of these acids are 1.76 x lO- M, 55.5 M, and 0.10 M, respec-... [Pg.347]

There is also the possibility of mistaking nucleophilic catalysis for general base catalysis. Table 6-4 outlines some experimental techniques for distinguishing between these possibilities. [Pg.349]

Wawzonek et al. first investigated the mechanism of the cyclization of A-haloamines and correctly proposed the free radical chain reaction pathway that was substantiated by experimental data. "" Subsequently, Corey and Hertler examined the stereochemistry, hydrogen isotope effect, initiation, catalysis, intermediates, and selectivity of hydrogen transfer. Their results pointed conclusively to a free radical chain mechanism involving intramolecular hydrogen transfer as one of the propagation steps. Accordingly, the... [Pg.89]

Indole itself forms a dimer or a trimer, depending on experimental conditions the dimer hydrochloride is formed in aprotic solvents with dry HCl, whereas aqueous media lead to dimer or trimer, or both. It was Schmitz-DuMont and his collaborators who beautifully cleared up the experimental confusion and discovered the simple fact that in aqueous acid the composition of the product is dictated by the relative solubilities of the dimer and trimer hydrochlorides/ -This, of course, established the very important point that there is an equilibrium in solution among indole, the dimer, the trimer, and their salts. It was furthermore demonstrated that the polymerization mechanism involves acid catalysis and that in dilute solution the rate of reaction is dependent on the concentration of acid. [Pg.300]

In 1836 Jons Jakob Berzelius considered eight seemingly unrelated experimental results and concluded that there was a common thread among them. The commonality he defined as catalysis. In doing tliis, Berzelius proposed that a catalytic force was responsible for catalytic action. The concept of catalysis is today considered by most researchers to be due to Berzelius, probably because of the popularity of his annual Handbook of Chemistiywhere he published his definition of catalytic action. For the next one hundred years many referred to the phenomenon as contact catalysis or contact action, as proposed by Mitscherlich. [Pg.224]

The applications of quantitative structure-reactivity analysis to cyclodextrin com-plexation and cyclodextrin catalysis, mostly from our laboratories, as well as the experimental and theoretical backgrounds of these approaches, are reviewed. These approaches enable us to separate several intermolecular interactions, acting simultaneously, from one another in terms of physicochemical parameters, to evaluate the extent to which each interaction contributes, and to predict thermodynamic stabilities and/or kinetic rate constants experimentally undetermined. Conclusions obtained are mostly consistent with those deduced from experimental measurements. [Pg.62]


See other pages where Catalysis experimental is mentioned: [Pg.194]    [Pg.306]    [Pg.152]    [Pg.141]    [Pg.40]    [Pg.40]    [Pg.403]    [Pg.194]    [Pg.306]    [Pg.152]    [Pg.141]    [Pg.40]    [Pg.40]    [Pg.403]    [Pg.2391]    [Pg.2832]    [Pg.18]    [Pg.9]    [Pg.3]    [Pg.461]    [Pg.62]    [Pg.178]    [Pg.2]    [Pg.233]    [Pg.579]    [Pg.291]    [Pg.264]    [Pg.357]    [Pg.157]    [Pg.146]    [Pg.316]    [Pg.270]    [Pg.777]    [Pg.245]   


SEARCH



Catalysis experimental demonstration

Effects in Experimental Catalysis

Experimental and theoretical developments in small metal-particle catalysis using electron microscopy

Experimental laws in heterogeneous catalysis

Experimental studies of general acid—base catalysis

© 2024 chempedia.info